# Copyright (C) 2022-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # -------------------------------------------------------- # Main encoder/decoder blocks # -------------------------------------------------------- # References: # timm # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py import torch import torch.nn as nn from itertools import repeat import collections.abc def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): return x return tuple(repeat(x, n)) return parse to_2tuple = _ntuple(2) def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) def extra_repr(self): return f'drop_prob={round(self.drop_prob,3):0.3f}' class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features bias = to_2tuple(bias) drop_probs = to_2tuple(drop) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class Attention(nn.Module): def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.rope = rope def forward(self, x, xpos): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).transpose(1,3) q, k, v = [qkv[:,:,i] for i in range(3)] # q,k,v = qkv.unbind(2) # make torchscript happy (cannot use tensor as tuple) if self.rope is not None: q = self.rope(q, xpos) k = self.rope(k, xpos) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rope=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, xpos): x = x + self.drop_path(self.attn(self.norm1(x), xpos)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class CrossAttention(nn.Module): def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.projq = nn.Linear(dim, dim, bias=qkv_bias) self.projk = nn.Linear(dim, dim, bias=qkv_bias) self.projv = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.rope = rope def forward(self, query, key, value, qpos, kpos): B, Nq, C = query.shape Nk = key.shape[1] Nv = value.shape[1] q = self.projq(query).reshape(B,Nq,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) k = self.projk(key).reshape(B,Nk,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) v = self.projv(value).reshape(B,Nv,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) if self.rope is not None: q = self.rope(q, qpos) k = self.rope(k, kpos) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, Nq, C) x = self.proj(x) x = self.proj_drop(x) return x class DecoderBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_mem=True, rope=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.cross_attn = CrossAttention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.norm3 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.norm_y = norm_layer(dim) if norm_mem else nn.Identity() def forward(self, x, y, xpos, ypos): x = x + self.drop_path(self.attn(self.norm1(x), xpos)) y_ = self.norm_y(y) x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos)) x = x + self.drop_path(self.mlp(self.norm3(x))) return x, y # patch embedding class PositionGetter(object): """ return positions of patches """ def __init__(self): self.cache_positions = {} def __call__(self, b, h, w, device): if not (h,w) in self.cache_positions: x = torch.arange(w, device=device) y = torch.arange(h, device=device) self.cache_positions[h,w] = torch.cartesian_prod(y, x) # (h, w, 2) pos = self.cache_positions[h,w].view(1, h*w, 2).expand(b, -1, 2).clone() return pos class PatchEmbed(nn.Module): """ just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed""" def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() self.position_getter = PositionGetter() def forward(self, x): B, C, H, W = x.shape torch._assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") torch._assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") x = self.proj(x) pos = self.position_getter(B, x.size(2), x.size(3), x.device) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x, pos def _init_weights(self): w = self.proj.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))