import torch import torch.nn as nn import torch.nn.functional as F from einops.einops import rearrange, repeat class FinePreprocess(nn.Module): def __init__(self, config): super().__init__() self.config = config self.cat_c_feat = config["fine_concat_coarse_feat"] self.W = self.config["fine_window_size"] d_model_c = self.config["coarse"]["d_model"] d_model_f = self.config["fine"]["d_model"] self.d_model_f = d_model_f if self.cat_c_feat: self.down_proj = nn.Linear(d_model_c, d_model_f, bias=True) self.merge_feat = nn.Linear(2 * d_model_f, d_model_f, bias=True) self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.kaiming_normal_(p, mode="fan_out", nonlinearity="relu") def forward(self, feat_f0, feat_f1, feat_c0, feat_c1, data): W = self.W stride = data["hw0_f"][0] // data["hw0_c"][0] data.update({"W": W}) if data["b_ids"].shape[0] == 0: feat0 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device) feat1 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device) return feat0, feat1 # 1. unfold(crop) all local windows feat_f0_unfold = F.unfold( feat_f0, kernel_size=(W, W), stride=stride, padding=W // 2 ) feat_f0_unfold = rearrange(feat_f0_unfold, "n (c ww) l -> n l ww c", ww=W**2) feat_f1_unfold = F.unfold( feat_f1, kernel_size=(W, W), stride=stride, padding=W // 2 ) feat_f1_unfold = rearrange(feat_f1_unfold, "n (c ww) l -> n l ww c", ww=W**2) # 2. select only the predicted matches feat_f0_unfold = feat_f0_unfold[data["b_ids"], data["i_ids"]] # [n, ww, cf] feat_f1_unfold = feat_f1_unfold[data["b_ids"], data["j_ids"]] # option: use coarse-level feature as context: concat and linear if self.cat_c_feat: feat_c_win = self.down_proj( torch.cat( [ feat_c0[data["b_ids"], data["i_ids"]], feat_c1[data["b_ids"], data["j_ids"]], ], 0, ) ) # [2n, c] feat_cf_win = self.merge_feat( torch.cat( [ torch.cat([feat_f0_unfold, feat_f1_unfold], 0), # [2n, ww, cf] repeat(feat_c_win, "n c -> n ww c", ww=W**2), # [2n, ww, cf] ], -1, ) ) feat_f0_unfold, feat_f1_unfold = torch.chunk(feat_cf_win, 2, dim=0) return feat_f0_unfold, feat_f1_unfold