''' compute distance matrix for megadepth using ComputeCanada ''' import sys sys.path.append('..') import os import argparse import numpy as np from joblib import Parallel, delayed from tqdm import tqdm from COTR.options.options import * from COTR.options.options_utils import * from COTR.utils import debug_utils, utils, constants from COTR.datasets import colmap_helper from COTR.projector import pcd_projector from COTR.global_configs import dataset_config assert colmap_helper.COVISIBILITY_CHECK, 'Please enable COVISIBILITY_CHECK' assert colmap_helper.LOAD_PCD, 'Please enable LOAD_PCD' OFFSET_THRESHOLD = 1.0 def get_index_pairs(dist_mat, cells): pairs = [] for row in range(dist_mat.shape[0]): for col in range(dist_mat.shape[0]): if dist_mat[row][col] == -1: pairs.append([row, col]) if len(pairs) == cells: return pairs return pairs def load_dist_mat(path, size=None): if os.path.isfile(path): dist_mat = np.load(path) assert dist_mat.shape[0] == dist_mat.shape[1] else: dist_mat = np.ones([size, size], dtype=np.float32) * -1 assert dist_mat.shape[0] == dist_mat.shape[1] return dist_mat def distance_between_two_caps(caps): cap_1, cap_2 = caps try: if len(np.intersect1d(cap_1.point3d_id, cap_2.point3d_id)) == 0: return 0.0 pcd = cap_2.point_cloud_world extrin_cap_1 = cap_1.cam_pose.world_to_camera[0:3, :] intrin_cap_1 = cap_1.pinhole_cam.intrinsic_mat size = cap_1.pinhole_cam.shape[:2] reproj = pcd_projector.PointCloudProjector.pcd_3d_to_pcd_2d_np(pcd[:, 0:3], intrin_cap_1, extrin_cap_1, size, keep_z=True, crop=True, filter_neg=True, norm_coord=False) reproj = pcd_projector.PointCloudProjector.pcd_2d_to_img_2d_np(reproj, size)[..., 0] # 1. calculate the iou query_mask = cap_1.depth_map > 0 reproj_mask = reproj > 0 intersection_mask = query_mask * reproj_mask union_mask = query_mask | reproj_mask if union_mask.sum() == 0: return 0.0 intersection_mask = (abs(cap_1.depth_map - reproj) * intersection_mask < OFFSET_THRESHOLD) * intersection_mask ratio = intersection_mask.sum() / union_mask.sum() if ratio == 0.0: return 0.0 return ratio except Exception as e: print(e) return 0.0 def fill_covisibility(scene, dist_mat): for i in range(dist_mat.shape[0]): nns = scene.get_covisible_caps(scene[i]) covis_list = [scene.img_id_to_index_dict[cap.image_id] for cap in nns] for j in range(dist_mat.shape[0]): if j not in covis_list: dist_mat[i][j] = 0 return dist_mat def main(opt): # fast fail try: dist_mat = load_dist_mat(opt.out_path) if dist_mat.min() >= 0.0: print(f'{opt.out_path} is complete!') exit() else: print('continue working') except Exception as e: print(e) print('first time start working') scene_dir = opt.scenes_name_list[0]['scene_dir'] image_dir = opt.scenes_name_list[0]['image_dir'] depth_dir = opt.scenes_name_list[0]['depth_dir'] scene = colmap_helper.ColmapWithDepthAsciiReader.read_sfm_scene_given_valid_list_path(scene_dir, image_dir, depth_dir, dataset_config[opt.dataset_name]['valid_list_json'], opt.crop_cam) size = len(scene.captures) dist_mat = load_dist_mat(opt.out_path, size) if opt.use_ram: scene.read_data_to_ram(['depth']) if dist_mat.max() == -1: dist_mat = fill_covisibility(scene, dist_mat) np.save(opt.out_path, dist_mat) pairs = get_index_pairs(dist_mat, opt.cells) in_pairs = [[scene[p[0]], scene[p[1]]] for p in pairs] results = Parallel(n_jobs=opt.num_cpus)(delayed(distance_between_two_caps)(pair) for pair in tqdm(in_pairs, desc='calculating distance matrix', total=len(in_pairs))) for i, p in enumerate(pairs): r, c = p dist_mat[r][c] = results[i] np.save(opt.out_path, dist_mat) print(f'finished from {pairs[0][0]}-{pairs[0][1]} -> {pairs[-1][0]}-{pairs[-1][1]}') print(f'in total {len(pairs)} cells') print(f'progress {(dist_mat >= 0).sum() / dist_mat.size}') print(f'save at {opt.out_path}') if __name__ == "__main__": parser = argparse.ArgumentParser() set_general_arguments(parser) parser.add_argument('--dataset_name', type=str, default='megadepth', help='dataset name') parser.add_argument('--use_ram', type=str2bool, default=False, help='load image/depth to ram') parser.add_argument('--info_level', type=str, default='rgbd', help='the information level of dataset') parser.add_argument('--scene', type=str, default='0000', required=True, help='what scene want to use') parser.add_argument('--seq', type=str, default='0', required=True, help='what seq want to use') parser.add_argument('--crop_cam', choices=['no_crop', 'crop_center', 'crop_center_and_resize'], type=str, default='no_crop', help='crop the center of image to avoid changing aspect ratio, resize to make the operations batch-able.') parser.add_argument('--cells', type=int, default=10000, help='the number of cells to be computed in this run') parser.add_argument('--num_cpus', type=int, default=6, help='num of cores') opt = parser.parse_args() opt.scenes_name_list = options_utils.build_scenes_name_list_from_opt(opt) opt.out_dir = os.path.join(os.path.dirname(opt.scenes_name_list[0]['depth_dir']), 'dist_mat') opt.out_path = os.path.join(opt.out_dir, 'dist_mat.npy') os.makedirs(opt.out_dir, exist_ok=True) if opt.confirm: confirm_opt(opt) else: print_opt(opt) main(opt)