""" This file implements the synthetic shape dataset object for pytorch """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import os import math import h5py import pickle import torch import numpy as np import cv2 from tqdm import tqdm from torchvision import transforms from torch.utils.data import Dataset import torch.utils.data.dataloader as torch_loader from ..config.project_config import Config as cfg from . import synthetic_util from .transforms import photometric_transforms as photoaug from .transforms import homographic_transforms as homoaug from ..misc.train_utils import parse_h5_data def synthetic_collate_fn(batch): """ Customized collate_fn. """ batch_keys = ["image", "junction_map", "heatmap", "valid_mask", "homography"] list_keys = ["junctions", "line_map", "file_key"] outputs = {} for data_key in batch[0].keys(): batch_match = sum([_ in data_key for _ in batch_keys]) list_match = sum([_ in data_key for _ in list_keys]) # print(batch_match, list_match) if batch_match > 0 and list_match == 0: outputs[data_key] = torch_loader.default_collate([b[data_key] for b in batch]) elif batch_match == 0 and list_match > 0: outputs[data_key] = [b[data_key] for b in batch] elif batch_match == 0 and list_match == 0: continue else: raise ValueError( "[Error] A key matches batch keys and list keys simultaneously.") return outputs class SyntheticShapes(Dataset): """ Dataset of synthetic shapes. """ # Initialize the dataset def __init__(self, mode="train", config=None): super(SyntheticShapes, self).__init__() if not mode in ["train", "val", "test"]: raise ValueError( "[Error] Supported dataset modes are 'train', 'val', and 'test'.") self.mode = mode # Get configuration if config is None: self.config = self.get_default_config() else: self.config = config # Set all available primitives self.available_primitives = [ 'draw_lines', 'draw_polygon', 'draw_multiple_polygons', 'draw_star', 'draw_checkerboard_multiseg', 'draw_stripes_multiseg', 'draw_cube', 'gaussian_noise' ] # Some cache setting self.dataset_name = self.get_dataset_name() self.cache_name = self.get_cache_name() self.cache_path = cfg.synthetic_cache_path # Check if export dataset exists print("===============================================") self.filename_dataset, self.datapoints = self.construct_dataset() self.print_dataset_info() # Initialize h5 file handle self.dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name + ".h5") # Fix the random seed for torch and numpy in testing mode if ((self.mode == "val" or self.mode == "test") and self.config["add_augmentation_to_all_splits"]): seed = self.config.get("test_augmentation_seed", 200) np.random.seed(seed) torch.manual_seed(seed) # For CuDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False ########################################## ## Dataset construction related methods ## ########################################## def construct_dataset(self): """ Dataset constructor. """ # Check if the filename cache exists # If cache exists, load from cache if self._check_dataset_cache(): print("[Info]: Found filename cache at ...") print("\t Load filename cache...") filename_dataset, datapoints = self.get_filename_dataset_from_cache() print("\t Check if all file exists...") # If all file exists, continue if self._check_file_existence(filename_dataset): print("\t All files exist!") # If not, need to re-export the synthetic dataset else: print("\t Some files are missing. Re-export the synthetic shape dataset.") self.export_synthetic_shapes() print("\t Initialize filename dataset") filename_dataset, datapoints = self.get_filename_dataset() print("\t Create filename dataset cache...") self.create_filename_dataset_cache(filename_dataset, datapoints) # If not, initialize dataset from scratch else: print("[Info]: Can't find filename cache ...") print("\t First check export dataset exists.") # If export dataset exists, then just update the filename_dataset if self._check_export_dataset(): print("\t Synthetic dataset exists. Initialize the dataset ...") # If export dataset does not exist, export from scratch else: print("\t Synthetic dataset does not exist. Export the synthetic dataset.") self.export_synthetic_shapes() print("\t Initialize filename dataset") filename_dataset, datapoints = self.get_filename_dataset() print("\t Create filename dataset cache...") self.create_filename_dataset_cache(filename_dataset, datapoints) return filename_dataset, datapoints def get_cache_name(self): """ Get cache name from dataset config / default config. """ if self.config["dataset_name"] is None: dataset_name = self.default_config["dataset_name"] + "_%s" % self.mode else: dataset_name = self.config["dataset_name"] + "_%s" % self.mode # Compose cache name cache_name = dataset_name + "_cache.pkl" return cache_name def get_dataset_name(self): """Get dataset name from dataset config / default config. """ if self.config["dataset_name"] is None: dataset_name = self.default_config["dataset_name"] + "_%s" % self.mode else: dataset_name = self.config["dataset_name"] + "_%s" % self.mode return dataset_name def get_filename_dataset_from_cache(self): """ Get filename dataset from cache. """ # Load from the pkl cache cache_file_path = os.path.join(self.cache_path, self.cache_name) with open(cache_file_path, "rb") as f: data = pickle.load(f) return data["filename_dataset"], data["datapoints"] def get_filename_dataset(self): """ Get filename dataset from scratch. """ # Path to the exported dataset dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name + ".h5") filename_dataset = {} datapoints = [] # Open the h5 dataset with h5py.File(dataset_path, "r") as f: # Iterate through all the primitives for prim_name in f.keys(): filenames = sorted(f[prim_name].keys()) filenames_full = [os.path.join(prim_name, _) for _ in filenames] filename_dataset[prim_name] = filenames_full datapoints += filenames_full return filename_dataset, datapoints def create_filename_dataset_cache(self, filename_dataset, datapoints): """ Create filename dataset cache for faster initialization. """ # Check cache path exists if not os.path.exists(self.cache_path): os.makedirs(self.cache_path) cache_file_path = os.path.join(self.cache_path, self.cache_name) data = { "filename_dataset": filename_dataset, "datapoints": datapoints } with open(cache_file_path, "wb") as f: pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) def export_synthetic_shapes(self): """ Export synthetic shapes to disk. """ # Set the global random state for data generation synthetic_util.set_random_state(np.random.RandomState( self.config["generation"]["random_seed"])) # Define the export path dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name + ".h5") # Open h5py file with h5py.File(dataset_path, "w", libver="latest") as f: # Iterate through all types of shape primitives = self.parse_drawing_primitives( self.config["primitives"]) split_size = self.config["generation"]["split_sizes"][self.mode] for prim in primitives: # Create h5 group group = f.create_group(prim) # Export single primitive self.export_single_primitive(prim, split_size, group) f.swmr_mode = True def export_single_primitive(self, primitive, split_size, group): """ Export single primitive. """ # Check if the primitive is valid or not if primitive not in self.available_primitives: raise ValueError( "[Error]: %s is not a supported primitive" % primitive) # Set the random seed synthetic_util.set_random_state(np.random.RandomState( self.config["generation"]["random_seed"])) # Generate shapes print("\t Generating %s ..." % primitive) for idx in tqdm(range(split_size), ascii=True): # Generate background image image = synthetic_util.generate_background( self.config['generation']['image_size'], **self.config['generation']['params']['generate_background']) # Generate points drawing_func = getattr(synthetic_util, primitive) kwarg = self.config["generation"]["params"].get(primitive, {}) # Get min_len and min_label_len min_len = self.config["generation"]["min_len"] min_label_len = self.config["generation"]["min_label_len"] # Some only take min_label_len, and gaussian noises take nothing if primitive in ["draw_lines", "draw_polygon", "draw_multiple_polygons", "draw_star"]: data = drawing_func(image, min_len=min_len, min_label_len=min_label_len, **kwarg) elif primitive in ["draw_checkerboard_multiseg", "draw_stripes_multiseg", "draw_cube"]: data = drawing_func(image, min_label_len=min_label_len, **kwarg) else: data = drawing_func(image, **kwarg) # Convert the data if data["points"] is not None: points = np.flip(data["points"], axis=1).astype(np.float) line_map = data["line_map"].astype(np.int32) else: points = np.zeros([0, 2]).astype(np.float) line_map = np.zeros([0, 0]).astype(np.int32) # Post-processing blur_size = self.config["preprocessing"]["blur_size"] image = cv2.GaussianBlur(image, (blur_size, blur_size), 0) # Resize the image and the point location. points = (points * np.array(self.config['preprocessing']['resize'], np.float) / np.array(self.config['generation']['image_size'], np.float)) image = cv2.resize( image, tuple(self.config['preprocessing']['resize'][::-1]), interpolation=cv2.INTER_LINEAR) image = np.array(image, dtype=np.uint8) # Generate the line heatmap after post-processing junctions = np.flip(np.round(points).astype(np.int32), axis=1) heatmap = (synthetic_util.get_line_heatmap( junctions, line_map, size=image.shape) * 255.).astype(np.uint8) # Record the data in group num_pad = math.ceil(math.log10(split_size)) + 1 file_key_name = self.get_padded_filename(num_pad, idx) file_group = group.create_group(file_key_name) # Store data file_group.create_dataset("points", data=points, compression="gzip") file_group.create_dataset("image", data=image, compression="gzip") file_group.create_dataset("line_map", data=line_map, compression="gzip") file_group.create_dataset("heatmap", data=heatmap, compression="gzip") def get_default_config(self): """ Get default configuration of the dataset. """ # Initialize the default configuration self.default_config = { "dataset_name": "synthetic_shape", "primitives": "all", "add_augmentation_to_all_splits": False, # Shape generation configuration "generation": { "split_sizes": {'train': 10000, 'val': 400, 'test': 500}, "random_seed": 10, "image_size": [960, 1280], "min_len": 0.09, "min_label_len": 0.1, 'params': { 'generate_background': { 'min_kernel_size': 150, 'max_kernel_size': 500, 'min_rad_ratio': 0.02, 'max_rad_ratio': 0.031}, 'draw_stripes': {'transform_params': (0.1, 0.1)}, 'draw_multiple_polygons': {'kernel_boundaries': (50, 100)} }, }, # Date preprocessing configuration. "preprocessing": { "resize": [240, 320], "blur_size": 11 }, 'augmentation': { 'photometric': { 'enable': False, 'primitives': 'all', 'params': {}, 'random_order': True, }, 'homographic': { 'enable': False, 'params': {}, 'valid_border_margin': 0, }, } } return self.default_config def parse_drawing_primitives(self, names): """ Parse the primitives in config to list of primitive names. """ if names == "all": p = self.available_primitives else: if isinstance(names, list): p = names else: p = [names] assert set(p) <= set(self.available_primitives) return p @staticmethod def get_padded_filename(num_pad, idx): """ Get the padded filename using adaptive padding. """ file_len = len("%d" % (idx)) filename = "0" * (num_pad - file_len) + "%d" % (idx) return filename def print_dataset_info(self): """ Print dataset info. """ print("\t ---------Summary------------------") print("\t Dataset mode: \t\t %s" % self.mode) print("\t Number of primitive: \t %d" % len(self.filename_dataset.keys())) print("\t Number of data: \t %d" % len(self.datapoints)) print("\t ----------------------------------") ######################### ## Pytorch related API ## ######################### def get_data_from_datapoint(self, datapoint, reader=None): """ Get data given the datapoint (keyname of the h5 dataset e.g. "draw_lines/0000.h5"). """ # Check if the datapoint is valid if not datapoint in self.datapoints: raise ValueError( "[Error] The specified datapoint is not in available datapoints.") # Get data from h5 dataset if reader is None: raise ValueError( "[Error] The reader must be provided in __getitem__.") else: data = reader[datapoint] return parse_h5_data(data) def get_data_from_signature(self, primitive_name, index): """ Get data given the primitive name and index ("draw_lines", 10) """ # Check the primitive name and index self._check_primitive_and_index(primitive_name, index) # Get the datapoint from filename dataset datapoint = self.filename_dataset[primitive_name][index] return self.get_data_from_datapoint(datapoint) def parse_transforms(self, names, all_transforms): trans = all_transforms if (names == 'all') \ else (names if isinstance(names, list) else [names]) assert set(trans) <= set(all_transforms) return trans def get_photo_transform(self): """ Get list of photometric transforms (according to the config). """ # Get the photometric transform config photo_config = self.config["augmentation"]["photometric"] if not photo_config["enable"]: raise ValueError( "[Error] Photometric augmentation is not enabled.") # Parse photometric transforms trans_lst = self.parse_transforms(photo_config["primitives"], photoaug.available_augmentations) trans_config_lst = [photo_config["params"].get(p, {}) for p in trans_lst] # List of photometric augmentation photometric_trans_lst = [ getattr(photoaug, trans)(**conf) \ for (trans, conf) in zip(trans_lst, trans_config_lst) ] return photometric_trans_lst def get_homo_transform(self): """ Get homographic transforms (according to the config). """ # Get homographic transforms for image homo_config = self.config["augmentation"]["homographic"]["params"] if not self.config["augmentation"]["homographic"]["enable"]: raise ValueError( "[Error] Homographic augmentation is not enabled") # Parse the homographic transforms # ToDo: use the shape from the config image_shape = self.config["preprocessing"]["resize"] # Compute the min_label_len from config try: min_label_tmp = self.config["generation"]["min_label_len"] except: min_label_tmp = None # float label len => fraction if isinstance(min_label_tmp, float): # Skip if not provided min_label_len = min_label_tmp * min(image_shape) # int label len => length in pixel elif isinstance(min_label_tmp, int): scale_ratio = (self.config["preprocessing"]["resize"] / self.config["generation"]["image_size"][0]) min_label_len = (self.config["generation"]["min_label_len"] * scale_ratio) # if none => no restriction else: min_label_len = 0 # Initialize the transform homographic_trans = homoaug.homography_transform( image_shape, homo_config, 0, min_label_len) return homographic_trans @staticmethod def junc_to_junc_map(junctions, image_size): """ Convert junction points to junction maps. """ junctions = np.round(junctions).astype(np.int) # Clip the boundary by image size junctions[:, 0] = np.clip(junctions[:, 0], 0., image_size[0]-1) junctions[:, 1] = np.clip(junctions[:, 1], 0., image_size[1]-1) # Create junction map junc_map = np.zeros([image_size[0], image_size[1]]) junc_map[junctions[:, 0], junctions[:, 1]] = 1 return junc_map[..., None].astype(np.int) def train_preprocessing(self, data, disable_homoaug=False): """ Training preprocessing. """ # Fetch corresponding entries image = data["image"] junctions = data["points"] line_map = data["line_map"] heatmap = data["heatmap"] image_size = image.shape[:2] # Resize the image before the photometric and homographic transforms # Check if we need to do the resizing if not(list(image.shape) == self.config["preprocessing"]["resize"]): # Resize the image and the point location. size_old = list(image.shape) image = cv2.resize( image, tuple(self.config['preprocessing']['resize'][::-1]), interpolation=cv2.INTER_LINEAR) image = np.array(image, dtype=np.uint8) junctions = ( junctions * np.array(self.config['preprocessing']['resize'], np.float) / np.array(size_old, np.float)) # Generate the line heatmap after post-processing junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1) heatmap = synthetic_util.get_line_heatmap(junctions_xy, line_map, size=image.shape) heatmap = (heatmap * 255.).astype(np.uint8) # Update image size image_size = image.shape[:2] # Declare default valid mask (all ones) valid_mask = np.ones(image_size) # Check if we need to apply augmentations # In training mode => yes. # In homography adaptation mode (export mode) => No # Check photometric augmentation if self.config["augmentation"]["photometric"]["enable"]: photo_trans_lst = self.get_photo_transform() ### Image transform ### np.random.shuffle(photo_trans_lst) image_transform = transforms.Compose( photo_trans_lst + [photoaug.normalize_image()]) else: image_transform = photoaug.normalize_image() image = image_transform(image) # Initialize the empty output dict outputs = {} # Convert to tensor and return the results to_tensor = transforms.ToTensor() # Check homographic augmentation if (self.config["augmentation"]["homographic"]["enable"] and disable_homoaug == False): homo_trans = self.get_homo_transform() # Perform homographic transform homo_outputs = homo_trans(image, junctions, line_map) # Record the warped results junctions = homo_outputs["junctions"] # Should be HW format image = homo_outputs["warped_image"] line_map = homo_outputs["line_map"] heatmap = homo_outputs["warped_heatmap"] valid_mask = homo_outputs["valid_mask"] # Same for pos and neg homography_mat = homo_outputs["homo"] # Optionally put warpping information first. outputs["homography_mat"] = to_tensor( homography_mat).to(torch.float32)[0, ...] junction_map = self.junc_to_junc_map(junctions, image_size) outputs.update({ "image": to_tensor(image), "junctions": to_tensor(np.ascontiguousarray( junctions).copy()).to(torch.float32)[0, ...], "junction_map": to_tensor(junction_map).to(torch.int), "line_map": to_tensor(line_map).to(torch.int32)[0, ...], "heatmap": to_tensor(heatmap).to(torch.int32), "valid_mask": to_tensor(valid_mask).to(torch.int32), }) return outputs def test_preprocessing(self, data): """ Test preprocessing. """ # Fetch corresponding entries image = data["image"] points = data["points"] line_map = data["line_map"] heatmap = data["heatmap"] image_size = image.shape[:2] # Resize the image before the photometric and homographic transforms if not (list(image.shape) == self.config["preprocessing"]["resize"]): # Resize the image and the point location. size_old = list(image.shape) image = cv2.resize( image, tuple(self.config['preprocessing']['resize'][::-1]), interpolation=cv2.INTER_LINEAR) image = np.array(image, dtype=np.uint8) points = (points * np.array(self.config['preprocessing']['resize'], np.float) / np.array(size_old, np.float)) # Generate the line heatmap after post-processing junctions = np.flip(np.round(points).astype(np.int32), axis=1) heatmap = synthetic_util.get_line_heatmap(junctions, line_map, size=image.shape) heatmap = (heatmap * 255.).astype(np.uint8) # Update image size image_size = image.shape[:2] ### image transform ### image_transform = photoaug.normalize_image() image = image_transform(image) ### joint transform ### junction_map = self.junc_to_junc_map(points, image_size) to_tensor = transforms.ToTensor() image = to_tensor(image) junctions = to_tensor(points) junction_map = to_tensor(junction_map).to(torch.int) line_map = to_tensor(line_map) heatmap = to_tensor(heatmap) valid_mask = to_tensor(np.ones(image_size)).to(torch.int32) return { "image": image, "junctions": junctions, "junction_map": junction_map, "line_map": line_map, "heatmap": heatmap, "valid_mask": valid_mask } def __getitem__(self, index): datapoint = self.datapoints[index] # Initialize reader and use it with h5py.File(self.dataset_path, "r", swmr=True) as reader: data = self.get_data_from_datapoint(datapoint, reader) # Apply different transforms in different mod. if (self.mode == "train" or self.config["add_augmentation_to_all_splits"]): return_type = self.config.get("return_type", "single") data = self.train_preprocessing(data) else: data = self.test_preprocessing(data) return data def __len__(self): return len(self.datapoints) ######################## ## Some other methods ## ######################## def _check_dataset_cache(self): """ Check if dataset cache exists. """ cache_file_path = os.path.join(self.cache_path, self.cache_name) if os.path.exists(cache_file_path): return True else: return False def _check_export_dataset(self): """ Check if exported dataset exists. """ dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name) if os.path.exists(dataset_path) and len(os.listdir(dataset_path)) > 0: return True else: return False def _check_file_existence(self, filename_dataset): """ Check if all exported file exists. """ # Path to the exported dataset dataset_path = os.path.join(cfg.synthetic_dataroot, self.dataset_name + ".h5") flag = True # Open the h5 dataset with h5py.File(dataset_path, "r") as f: # Iterate through all the primitives for prim_name in f.keys(): if (len(filename_dataset[prim_name]) != len(f[prim_name].keys())): flag = False return flag def _check_primitive_and_index(self, primitive, index): """ Check if the primitve and index are valid. """ # Check primitives if not primitive in self.available_primitives: raise ValueError( "[Error] The primitive is not in available primitives.") prim_len = len(self.filename_dataset[primitive]) # Check the index if not index < prim_len: raise ValueError( "[Error] The index exceeds the total file counts %d for %s" % (prim_len, primitive))