import os import sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, ROOT_DIR) from src.ASpanFormer.aspanformer import ASpanFormer from src.config.default import get_cfg_defaults from src.utils.misc import lower_config import demo_utils import cv2 import torch import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument('--config_path', type=str, default='../configs/aspan/outdoor/aspan_test.py', help='path for config file.') parser.add_argument('--img0_path', type=str, default='../assets/phototourism_sample_images/piazza_san_marco_06795901_3725050516.jpg', help='path for image0.') parser.add_argument('--img1_path', type=str, default='../assets/phototourism_sample_images/piazza_san_marco_15148634_5228701572.jpg', help='path for image1.') parser.add_argument('--weights_path', type=str, default='../weights/outdoor.ckpt', help='path for model weights.') parser.add_argument('--long_dim0', type=int, default=1024, help='resize for longest dim of image0.') parser.add_argument('--long_dim1', type=int, default=1024, help='resize for longest dim of image1.') args = parser.parse_args() if __name__=='__main__': config = get_cfg_defaults() config.merge_from_file(args.config_path) _config = lower_config(config) matcher = ASpanFormer(config=_config['aspan']) state_dict = torch.load(args.weights_path, map_location='cpu')['state_dict'] matcher.load_state_dict(state_dict,strict=False) matcher.cuda(),matcher.eval() img0,img1=cv2.imread(args.img0_path),cv2.imread(args.img1_path) img0_g,img1_g=cv2.imread(args.img0_path,0),cv2.imread(args.img1_path,0) img0,img1=demo_utils.resize(img0,args.long_dim0),demo_utils.resize(img1,args.long_dim1) img0_g,img1_g=demo_utils.resize(img0_g,args.long_dim0),demo_utils.resize(img1_g,args.long_dim1) data={'image0':torch.from_numpy(img0_g/255.)[None,None].cuda().float(), 'image1':torch.from_numpy(img1_g/255.)[None,None].cuda().float()} with torch.no_grad(): matcher(data,online_resize=True) corr0,corr1=data['mkpts0_f'].cpu().numpy(),data['mkpts1_f'].cpu().numpy() F_hat,mask_F=cv2.findFundamentalMat(corr0,corr1,method=cv2.FM_RANSAC,ransacReprojThreshold=1) if mask_F is not None: mask_F=mask_F[:,0].astype(bool) else: mask_F=np.zeros_like(corr0[:,0]).astype(bool) #visualize match display=demo_utils.draw_match(img0,img1,corr0,corr1) display_ransac=demo_utils.draw_match(img0,img1,corr0[mask_F],corr1[mask_F]) cv2.imwrite('match.png',display) cv2.imwrite('match_ransac.png',display_ransac) print(len(corr1),len(corr1[mask_F]))