import cv2 import os from tqdm import tqdm import torch import numpy as np from extract import extract_method use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") methods = [ "d2", "lfnet", "superpoint", "r2d2", "aslfeat", "disk", "alike-n", "alike-l", "alike-n-ms", "alike-l-ms", ] names = [ "D2-Net(MS)", "LF-Net(MS)", "SuperPoint", "R2D2(MS)", "ASLFeat(MS)", "DISK", "ALike-N", "ALike-L", "ALike-N(MS)", "ALike-L(MS)", ] top_k = None n_i = 52 n_v = 56 cache_dir = "hseq/cache" dataset_path = "hseq/hpatches-sequences-release" def generate_read_function(method, extension="ppm"): def read_function(seq_name, im_idx): aux = np.load( os.path.join( dataset_path, seq_name, "%d.%s.%s" % (im_idx, extension, method) ) ) if top_k is None: return aux["keypoints"], aux["descriptors"] else: assert "scores" in aux ids = np.argsort(aux["scores"])[-top_k:] return aux["keypoints"][ids, :], aux["descriptors"][ids, :] return read_function def mnn_matcher(descriptors_a, descriptors_b): device = descriptors_a.device sim = descriptors_a @ descriptors_b.t() nn12 = torch.max(sim, dim=1)[1] nn21 = torch.max(sim, dim=0)[1] ids1 = torch.arange(0, sim.shape[0], device=device) mask = ids1 == nn21[nn12] matches = torch.stack([ids1[mask], nn12[mask]]) return matches.t().data.cpu().numpy() def homo_trans(coord, H): kpt_num = coord.shape[0] homo_coord = np.concatenate((coord, np.ones((kpt_num, 1))), axis=-1) proj_coord = np.matmul(H, homo_coord.T).T proj_coord = proj_coord / proj_coord[:, 2][..., None] proj_coord = proj_coord[:, 0:2] return proj_coord def benchmark_features(read_feats): lim = [1, 5] rng = np.arange(lim[0], lim[1] + 1) seq_names = sorted(os.listdir(dataset_path)) n_feats = [] n_matches = [] seq_type = [] i_err = {thr: 0 for thr in rng} v_err = {thr: 0 for thr in rng} i_err_homo = {thr: 0 for thr in rng} v_err_homo = {thr: 0 for thr in rng} for seq_idx, seq_name in tqdm(enumerate(seq_names), total=len(seq_names)): keypoints_a, descriptors_a = read_feats(seq_name, 1) n_feats.append(keypoints_a.shape[0]) # =========== compute homography ref_img = cv2.imread(os.path.join(dataset_path, seq_name, "1.ppm")) ref_img_shape = ref_img.shape for im_idx in range(2, 7): keypoints_b, descriptors_b = read_feats(seq_name, im_idx) n_feats.append(keypoints_b.shape[0]) matches = mnn_matcher( torch.from_numpy(descriptors_a).to(device=device), torch.from_numpy(descriptors_b).to(device=device), ) homography = np.loadtxt( os.path.join(dataset_path, seq_name, "H_1_" + str(im_idx)) ) pos_a = keypoints_a[matches[:, 0], :2] pos_a_h = np.concatenate([pos_a, np.ones([matches.shape[0], 1])], axis=1) pos_b_proj_h = np.transpose(np.dot(homography, np.transpose(pos_a_h))) pos_b_proj = pos_b_proj_h[:, :2] / pos_b_proj_h[:, 2:] pos_b = keypoints_b[matches[:, 1], :2] dist = np.sqrt(np.sum((pos_b - pos_b_proj) ** 2, axis=1)) n_matches.append(matches.shape[0]) seq_type.append(seq_name[0]) if dist.shape[0] == 0: dist = np.array([float("inf")]) for thr in rng: if seq_name[0] == "i": i_err[thr] += np.mean(dist <= thr) else: v_err[thr] += np.mean(dist <= thr) # =========== compute homography gt_homo = homography pred_homo, _ = cv2.findHomography( keypoints_a[matches[:, 0], :2], keypoints_b[matches[:, 1], :2], cv2.RANSAC, ) if pred_homo is None: homo_dist = np.array([float("inf")]) else: corners = np.array( [ [0, 0], [ref_img_shape[1] - 1, 0], [0, ref_img_shape[0] - 1], [ref_img_shape[1] - 1, ref_img_shape[0] - 1], ] ) real_warped_corners = homo_trans(corners, gt_homo) warped_corners = homo_trans(corners, pred_homo) homo_dist = np.mean( np.linalg.norm(real_warped_corners - warped_corners, axis=1) ) for thr in rng: if seq_name[0] == "i": i_err_homo[thr] += np.mean(homo_dist <= thr) else: v_err_homo[thr] += np.mean(homo_dist <= thr) seq_type = np.array(seq_type) n_feats = np.array(n_feats) n_matches = np.array(n_matches) return i_err, v_err, i_err_homo, v_err_homo, [seq_type, n_feats, n_matches] if __name__ == "__main__": errors = {} for method in methods: output_file = os.path.join(cache_dir, method + ".npy") read_function = generate_read_function(method) if os.path.exists(output_file): errors[method] = np.load(output_file, allow_pickle=True) else: extract_method(method) errors[method] = benchmark_features(read_function) np.save(output_file, errors[method]) for name, method in zip(names, methods): i_err, v_err, i_err_hom, v_err_hom, _ = errors[method] print(f"====={name}=====") print(f"MMA@1 MMA@2 MMA@3 MHA@1 MHA@2 MHA@3: ", end="") for thr in range(1, 4): err = (i_err[thr] + v_err[thr]) / ((n_i + n_v) * 5) print(f"{err * 100:.2f}%", end=" ") for thr in range(1, 4): err_hom = (i_err_hom[thr] + v_err_hom[thr]) / ((n_i + n_v) * 5) print(f"{err_hom * 100:.2f}%", end=" ") print("")