#!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # Script to pre-process the scannet++ dataset. # Usage: # python3 datasets_preprocess/preprocess_scannetpp.py --scannetpp_dir /path/to/scannetpp --precomputed_pairs /path/to/scannetpp_pairs --pyopengl-platform egl # -------------------------------------------------------- import os import argparse import os.path as osp import re from tqdm import tqdm import json from scipy.spatial.transform import Rotation import pyrender import trimesh import trimesh.exchange.ply import numpy as np import cv2 import PIL.Image as Image from dust3r.datasets.utils.cropping import rescale_image_depthmap import dust3r.utils.geometry as geometry inv = np.linalg.inv norm = np.linalg.norm REGEXPR_DSLR = re.compile(r'^DSC(?P\d+).JPG$') REGEXPR_IPHONE = re.compile(r'frame_(?P\d+).jpg$') DEBUG_VIZ = None # 'iou' if DEBUG_VIZ is not None: import matplotlib.pyplot as plt # noqa OPENGL_TO_OPENCV = np.float32([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) def get_parser(): parser = argparse.ArgumentParser() parser.add_argument('--scannetpp_dir', required=True) parser.add_argument('--precomputed_pairs', required=True) parser.add_argument('--output_dir', default='data/scannetpp_processed') parser.add_argument('--target_resolution', default=920, type=int, help="images resolution") parser.add_argument('--pyopengl-platform', type=str, default='', help='PyOpenGL env variable') return parser def pose_from_qwxyz_txyz(elems): qw, qx, qy, qz, tx, ty, tz = map(float, elems) pose = np.eye(4) pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix() pose[:3, 3] = (tx, ty, tz) return np.linalg.inv(pose) # returns cam2world def get_frame_number(name, cam_type='dslr'): if cam_type == 'dslr': regex_expr = REGEXPR_DSLR elif cam_type == 'iphone': regex_expr = REGEXPR_IPHONE else: raise NotImplementedError(f'wrong {cam_type=} for get_frame_number') matches = re.match(regex_expr, name) return matches['frameid'] def load_sfm(sfm_dir, cam_type='dslr'): # load cameras with open(osp.join(sfm_dir, 'cameras.txt'), 'r') as f: raw = f.read().splitlines()[3:] # skip header intrinsics = {} for camera in tqdm(raw, position=1, leave=False): camera = camera.split(' ') intrinsics[int(camera[0])] = [camera[1]] + [float(cam) for cam in camera[2:]] # load images with open(os.path.join(sfm_dir, 'images.txt'), 'r') as f: raw = f.read().splitlines() raw = [line for line in raw if not line.startswith('#')] # skip header img_idx = {} img_infos = {} for image, points in tqdm(zip(raw[0::2], raw[1::2]), total=len(raw) // 2, position=1, leave=False): image = image.split(' ') points = points.split(' ') idx = image[0] img_name = image[-1] assert img_name not in img_idx, 'duplicate db image: ' + img_name img_idx[img_name] = idx # register image name current_points2D = {int(i): (float(x), float(y)) for i, x, y in zip(points[2::3], points[0::3], points[1::3]) if i != '-1'} img_infos[idx] = dict(intrinsics=intrinsics[int(image[-2])], path=img_name, frame_id=get_frame_number(img_name, cam_type), cam_to_world=pose_from_qwxyz_txyz(image[1: -2]), sparse_pts2d=current_points2D) # load 3D points with open(os.path.join(sfm_dir, 'points3D.txt'), 'r') as f: raw = f.read().splitlines() raw = [line for line in raw if not line.startswith('#')] # skip header points3D = {} observations = {idx: [] for idx in img_infos.keys()} for point in tqdm(raw, position=1, leave=False): point = point.split() point_3d_idx = int(point[0]) points3D[point_3d_idx] = tuple(map(float, point[1:4])) if len(point) > 8: for idx, point_2d_idx in zip(point[8::2], point[9::2]): observations[idx].append((point_3d_idx, int(point_2d_idx))) return img_idx, img_infos, points3D, observations def subsample_img_infos(img_infos, num_images, allowed_name_subset=None): img_infos_val = [(idx, val) for idx, val in img_infos.items()] if allowed_name_subset is not None: img_infos_val = [(idx, val) for idx, val in img_infos_val if val['path'] in allowed_name_subset] if len(img_infos_val) > num_images: img_infos_val = sorted(img_infos_val, key=lambda x: x[1]['frame_id']) kept_idx = np.round(np.linspace(0, len(img_infos_val) - 1, num_images)).astype(int).tolist() img_infos_val = [img_infos_val[idx] for idx in kept_idx] return {idx: val for idx, val in img_infos_val} def undistort_images(intrinsics, rgb, mask): camera_type = intrinsics[0] width = int(intrinsics[1]) height = int(intrinsics[2]) fx = intrinsics[3] fy = intrinsics[4] cx = intrinsics[5] cy = intrinsics[6] distortion = np.array(intrinsics[7:]) K = np.zeros([3, 3]) K[0, 0] = fx K[0, 2] = cx K[1, 1] = fy K[1, 2] = cy K[2, 2] = 1 K = geometry.colmap_to_opencv_intrinsics(K) if camera_type == "OPENCV_FISHEYE": assert len(distortion) == 4 new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify( K, distortion, (width, height), np.eye(3), balance=0.0, ) # Make the cx and cy to be the center of the image new_K[0, 2] = width / 2.0 new_K[1, 2] = height / 2.0 map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1) else: new_K, _ = cv2.getOptimalNewCameraMatrix(K, distortion, (width, height), 1, (width, height), True) map1, map2 = cv2.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1) undistorted_image = cv2.remap(rgb, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101) undistorted_mask = cv2.remap(mask, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=255) K = geometry.opencv_to_colmap_intrinsics(K) return width, height, new_K, undistorted_image, undistorted_mask def process_scenes(root, pairsdir, output_dir, target_resolution): os.makedirs(output_dir, exist_ok=True) # default values from # https://github.com/scannetpp/scannetpp/blob/main/common/configs/render.yml znear = 0.05 zfar = 20.0 listfile = osp.join(pairsdir, 'scene_list.json') with open(listfile, 'r') as f: scenes = json.load(f) # for each of these, we will select some dslr images and some iphone images # we will undistort them and render their depth renderer = pyrender.OffscreenRenderer(0, 0) for scene in tqdm(scenes, position=0, leave=True): data_dir = os.path.join(root, 'data', scene) dir_dslr = os.path.join(data_dir, 'dslr') dir_iphone = os.path.join(data_dir, 'iphone') dir_scans = os.path.join(data_dir, 'scans') assert os.path.isdir(data_dir) and os.path.isdir(dir_dslr) \ and os.path.isdir(dir_iphone) and os.path.isdir(dir_scans) output_dir_scene = os.path.join(output_dir, scene) scene_metadata_path = osp.join(output_dir_scene, 'scene_metadata.npz') if osp.isfile(scene_metadata_path): continue pairs_dir_scene = os.path.join(pairsdir, scene) pairs_dir_scene_selected_pairs = os.path.join(pairs_dir_scene, 'selected_pairs.npz') assert osp.isfile(pairs_dir_scene_selected_pairs) selected_npz = np.load(pairs_dir_scene_selected_pairs) selection, pairs = selected_npz['selection'], selected_npz['pairs'] # set up the output paths output_dir_scene_rgb = os.path.join(output_dir_scene, 'images') output_dir_scene_depth = os.path.join(output_dir_scene, 'depth') os.makedirs(output_dir_scene_rgb, exist_ok=True) os.makedirs(output_dir_scene_depth, exist_ok=True) ply_path = os.path.join(dir_scans, 'mesh_aligned_0.05.ply') sfm_dir_dslr = os.path.join(dir_dslr, 'colmap') rgb_dir_dslr = os.path.join(dir_dslr, 'resized_images') mask_dir_dslr = os.path.join(dir_dslr, 'resized_anon_masks') sfm_dir_iphone = os.path.join(dir_iphone, 'colmap') rgb_dir_iphone = os.path.join(dir_iphone, 'rgb') mask_dir_iphone = os.path.join(dir_iphone, 'rgb_masks') # load the mesh with open(ply_path, 'rb') as f: mesh_kwargs = trimesh.exchange.ply.load_ply(f) mesh_scene = trimesh.Trimesh(**mesh_kwargs) # read colmap reconstruction, we will only use the intrinsics and pose here img_idx_dslr, img_infos_dslr, points3D_dslr, observations_dslr = load_sfm(sfm_dir_dslr, cam_type='dslr') dslr_paths = { "in_colmap": sfm_dir_dslr, "in_rgb": rgb_dir_dslr, "in_mask": mask_dir_dslr, } img_idx_iphone, img_infos_iphone, points3D_iphone, observations_iphone = load_sfm( sfm_dir_iphone, cam_type='iphone') iphone_paths = { "in_colmap": sfm_dir_iphone, "in_rgb": rgb_dir_iphone, "in_mask": mask_dir_iphone, } mesh = pyrender.Mesh.from_trimesh(mesh_scene, smooth=False) pyrender_scene = pyrender.Scene() pyrender_scene.add(mesh) selection_dslr = [imgname + '.JPG' for imgname in selection if imgname.startswith('DSC')] selection_iphone = [imgname + '.jpg' for imgname in selection if imgname.startswith('frame_')] # resize the image to a more manageable size and render depth for selection_cam, img_idx, img_infos, paths_data in [(selection_dslr, img_idx_dslr, img_infos_dslr, dslr_paths), (selection_iphone, img_idx_iphone, img_infos_iphone, iphone_paths)]: rgb_dir = paths_data['in_rgb'] mask_dir = paths_data['in_mask'] for imgname in tqdm(selection_cam, position=1, leave=False): imgidx = img_idx[imgname] img_infos_idx = img_infos[imgidx] rgb = np.array(Image.open(os.path.join(rgb_dir, img_infos_idx['path']))) mask = np.array(Image.open(os.path.join(mask_dir, img_infos_idx['path'][:-3] + 'png'))) _, _, K, rgb, mask = undistort_images(img_infos_idx['intrinsics'], rgb, mask) # rescale_image_depthmap assumes opencv intrinsics intrinsics = geometry.colmap_to_opencv_intrinsics(K) image, mask, intrinsics = rescale_image_depthmap( rgb, mask, intrinsics, (target_resolution, target_resolution * 3.0 / 4)) W, H = image.size intrinsics = geometry.opencv_to_colmap_intrinsics(intrinsics) # update inpace img_infos_idx img_infos_idx['intrinsics'] = intrinsics rgb_outpath = os.path.join(output_dir_scene_rgb, img_infos_idx['path'][:-3] + 'jpg') image.save(rgb_outpath) depth_outpath = os.path.join(output_dir_scene_depth, img_infos_idx['path'][:-3] + 'png') # render depth image renderer.viewport_width, renderer.viewport_height = W, H fx, fy, cx, cy = intrinsics[0, 0], intrinsics[1, 1], intrinsics[0, 2], intrinsics[1, 2] camera = pyrender.camera.IntrinsicsCamera(fx, fy, cx, cy, znear=znear, zfar=zfar) camera_node = pyrender_scene.add(camera, pose=img_infos_idx['cam_to_world'] @ OPENGL_TO_OPENCV) depth = renderer.render(pyrender_scene, flags=pyrender.RenderFlags.DEPTH_ONLY) pyrender_scene.remove_node(camera_node) # dont forget to remove camera depth = (depth * 1000).astype('uint16') # invalidate depth from mask before saving depth_mask = (mask < 255) depth[depth_mask] = 0 Image.fromarray(depth).save(depth_outpath) trajectories = [] intrinsics = [] for imgname in selection: if imgname.startswith('DSC'): imgidx = img_idx_dslr[imgname + '.JPG'] img_infos_idx = img_infos_dslr[imgidx] elif imgname.startswith('frame_'): imgidx = img_idx_iphone[imgname + '.jpg'] img_infos_idx = img_infos_iphone[imgidx] else: raise ValueError('invalid image name') intrinsics.append(img_infos_idx['intrinsics']) trajectories.append(img_infos_idx['cam_to_world']) intrinsics = np.stack(intrinsics, axis=0) trajectories = np.stack(trajectories, axis=0) # save metadata for this scene np.savez(scene_metadata_path, trajectories=trajectories, intrinsics=intrinsics, images=selection, pairs=pairs) del img_infos del pyrender_scene # concat all scene_metadata.npz into a single file scene_data = {} for scene_subdir in scenes: scene_metadata_path = osp.join(output_dir, scene_subdir, 'scene_metadata.npz') with np.load(scene_metadata_path) as data: trajectories = data['trajectories'] intrinsics = data['intrinsics'] images = data['images'] pairs = data['pairs'] scene_data[scene_subdir] = {'trajectories': trajectories, 'intrinsics': intrinsics, 'images': images, 'pairs': pairs} offset = 0 counts = [] scenes = [] sceneids = [] images = [] intrinsics = [] trajectories = [] pairs = [] for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()): num_imgs = data['images'].shape[0] img_pairs = data['pairs'] scenes.append(scene_subdir) sceneids.extend([scene_idx] * num_imgs) images.append(data['images']) intrinsics.append(data['intrinsics']) trajectories.append(data['trajectories']) # offset pairs img_pairs[:, 0:2] += offset pairs.append(img_pairs) counts.append(offset) offset += num_imgs images = np.concatenate(images, axis=0) intrinsics = np.concatenate(intrinsics, axis=0) trajectories = np.concatenate(trajectories, axis=0) pairs = np.concatenate(pairs, axis=0) np.savez(osp.join(output_dir, 'all_metadata.npz'), counts=counts, scenes=scenes, sceneids=sceneids, images=images, intrinsics=intrinsics, trajectories=trajectories, pairs=pairs) print('all done') if __name__ == '__main__': parser = get_parser() args = parser.parse_args() if args.pyopengl_platform.strip(): os.environ['PYOPENGL_PLATFORM'] = args.pyopengl_platform process_scenes(args.scannetpp_dir, args.precomputed_pairs, args.output_dir, args.target_resolution)