import torch from fvcore.nn import FlopCountAnalysis from einops.einops import rearrange from src import get_model_cfg from src.models.backbone import FPN as topicfm_featnet from src.models.modules import TopicFormer from src.utils.dataset import read_scannet_gray from third_party.loftr.src.loftr.utils.cvpr_ds_config import default_cfg from third_party.loftr.src.loftr.backbone import ResNetFPN_8_2 as loftr_featnet from third_party.loftr.src.loftr.loftr_module import LocalFeatureTransformer def feat_net_flops(feat_net, config, input): model = feat_net(config) model.eval() flops = FlopCountAnalysis(model, input) feat_c, _ = model(input) return feat_c, flops.total() / 1e9 def coarse_model_flops(coarse_model, config, inputs): model = coarse_model(config) model.eval() flops = FlopCountAnalysis(model, inputs) return flops.total() / 1e9 if __name__ == "__main__": path_img0 = "assets/scannet_sample_images/scene0711_00_frame-001680.jpg" path_img1 = "assets/scannet_sample_images/scene0711_00_frame-001995.jpg" img0, img1 = read_scannet_gray(path_img0), read_scannet_gray(path_img1) img0, img1 = img0.unsqueeze(0), img1.unsqueeze(0) # LoFTR loftr_conf = dict(default_cfg) feat_c0, loftr_featnet_flops0 = feat_net_flops( loftr_featnet, loftr_conf["resnetfpn"], img0 ) feat_c1, loftr_featnet_flops1 = feat_net_flops( loftr_featnet, loftr_conf["resnetfpn"], img1 ) print( "FLOPs of feature extraction in LoFTR: {} GFLOPs".format( (loftr_featnet_flops0 + loftr_featnet_flops1) / 2 ) ) feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") loftr_coarse_model_flops = coarse_model_flops( LocalFeatureTransformer, loftr_conf["coarse"], (feat_c0, feat_c1) ) print( "FLOPs of coarse matching model in LoFTR: {} GFLOPs".format( loftr_coarse_model_flops ) ) # TopicFM topicfm_conf = get_model_cfg() feat_c0, topicfm_featnet_flops0 = feat_net_flops( topicfm_featnet, topicfm_conf["fpn"], img0 ) feat_c1, topicfm_featnet_flops1 = feat_net_flops( topicfm_featnet, topicfm_conf["fpn"], img1 ) print( "FLOPs of feature extraction in TopicFM: {} GFLOPs".format( (topicfm_featnet_flops0 + topicfm_featnet_flops1) / 2 ) ) feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") topicfm_coarse_model_flops = coarse_model_flops( TopicFormer, topicfm_conf["coarse"], (feat_c0, feat_c1) ) print( "FLOPs of coarse matching model in TopicFM: {} GFLOPs".format( topicfm_coarse_model_flops ) )