import cv2 import warnings import numpy as np from pathlib import Path from hloc import logger from ui.utils import ( get_matcher_zoo, load_config, DEVICE, ROOT, ) from ui.api import ImageMatchingAPI def test_all(config: dict = None): img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg" img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg" image0 = cv2.imread(str(img_path1))[:, :, ::-1] # RGB image1 = cv2.imread(str(img_path2))[:, :, ::-1] # RGB matcher_zoo_restored = get_matcher_zoo(config["matcher_zoo"]) for k, v in matcher_zoo_restored.items(): if image0 is None or image1 is None: logger.error("Error: No images found! Please upload two images.") enable = config["matcher_zoo"][k].get("enable", True) skip_ci = config["matcher_zoo"][k].get("skip_ci", False) if enable and not skip_ci: logger.info(f"Testing {k} ...") api = ImageMatchingAPI(conf=v, device=DEVICE) api(image0, image1) log_path = ROOT / "experiments" / "all" log_path.mkdir(exist_ok=True, parents=True) api.visualize(log_path=log_path) else: logger.info(f"Skipping {k} ...") return 0 def test_one(): img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg" img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg" image0 = cv2.imread(str(img_path1))[:, :, ::-1] # RGB image1 = cv2.imread(str(img_path2))[:, :, ::-1] # RGB # sparse conf = { "feature": { "output": "feats-superpoint-n4096-rmax1600", "model": { "name": "superpoint", "nms_radius": 3, "max_keypoints": 4096, "keypoint_threshold": 0.005, }, "preprocessing": { "grayscale": True, "force_resize": True, "resize_max": 1600, "width": 640, "height": 480, "dfactor": 8, }, }, "matcher": { "output": "matches-NN-mutual", "model": { "name": "nearest_neighbor", "do_mutual_check": True, "match_threshold": 0.2, }, }, "dense": False, } api = ImageMatchingAPI(conf=conf, device=DEVICE) api(image0, image1) log_path = ROOT / "experiments" / "one" log_path.mkdir(exist_ok=True, parents=True) api.visualize(log_path=log_path) # dense conf = { "matcher": { "output": "matches-loftr", "model": { "name": "loftr", "weights": "outdoor", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "resize_max": 1024, "dfactor": 8, "width": 640, "height": 480, "force_resize": True, }, "max_error": 1, "cell_size": 1, }, "dense": True, } api = ImageMatchingAPI(conf=conf, device=DEVICE) api(image0, image1) log_path = ROOT / "experiments" / "one" log_path.mkdir(exist_ok=True, parents=True) api.visualize(log_path=log_path) return 0 if __name__ == "__main__": config = load_config(ROOT / "ui/config.yaml") test_one() test_all(config)