import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from .score import peakiness_score class BaseNet(nn.Module): """Helper class to construct a fully-convolutional network that extract a l2-normalized patch descriptor. """ def __init__(self, inchan=3, dilated=True, dilation=1, bn=True, bn_affine=False): super(BaseNet, self).__init__() self.inchan = inchan self.curchan = inchan self.dilated = dilated self.dilation = dilation self.bn = bn self.bn_affine = bn_affine def _make_bn(self, outd): return nn.BatchNorm2d(outd, affine=self.bn_affine) def _add_conv( self, outd, k=3, stride=1, dilation=1, bn=True, relu=True, k_pool=1, pool_type="max", bias=False, ): # as in the original implementation, dilation is applied at the end of layer, so it will have impact only from next layer d = self.dilation * dilation # if self.dilated: # conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=1) # self.dilation *= stride # else: # conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=stride) conv_params = dict( padding=((k - 1) * d) // 2, dilation=d, stride=stride, bias=bias ) ops = nn.ModuleList([]) ops.append(nn.Conv2d(self.curchan, outd, kernel_size=k, **conv_params)) if bn and self.bn: ops.append(self._make_bn(outd)) if relu: ops.append(nn.ReLU(inplace=True)) self.curchan = outd if k_pool > 1: if pool_type == "avg": ops.append(torch.nn.AvgPool2d(kernel_size=k_pool)) elif pool_type == "max": ops.append(torch.nn.MaxPool2d(kernel_size=k_pool)) else: print(f"Error, unknown pooling type {pool_type}...") return nn.Sequential(*ops) class Quad_L2Net(BaseNet): """Same than L2_Net, but replace the final 8x8 conv by 3 successive 2x2 convs.""" def __init__(self, dim=128, mchan=4, relu22=False, **kw): BaseNet.__init__(self, **kw) self.conv0 = self._add_conv(8 * mchan) self.conv1 = self._add_conv(8 * mchan, bn=False) self.bn1 = self._make_bn(8 * mchan) self.conv2 = self._add_conv(16 * mchan, stride=2) self.conv3 = self._add_conv(16 * mchan, bn=False) self.bn3 = self._make_bn(16 * mchan) self.conv4 = self._add_conv(32 * mchan, stride=2) self.conv5 = self._add_conv(32 * mchan) # replace last 8x8 convolution with 3 3x3 convolutions self.conv6_0 = self._add_conv(32 * mchan) self.conv6_1 = self._add_conv(32 * mchan) self.conv6_2 = self._add_conv(dim, bn=False, relu=False) self.out_dim = dim self.moving_avg_params = nn.ParameterList( [ Parameter(torch.tensor(1.0), requires_grad=False), Parameter(torch.tensor(1.0), requires_grad=False), Parameter(torch.tensor(1.0), requires_grad=False), ] ) def forward(self, x): # x: [N, C, H, W] x0 = self.conv0(x) x1 = self.conv1(x0) x1_bn = self.bn1(x1) x2 = self.conv2(x1_bn) x3 = self.conv3(x2) x3_bn = self.bn3(x3) x4 = self.conv4(x3_bn) x5 = self.conv5(x4) x6_0 = self.conv6_0(x5) x6_1 = self.conv6_1(x6_0) x6_2 = self.conv6_2(x6_1) # calculate score map comb_weights = torch.tensor([1.0, 2.0, 3.0], device=x.device) comb_weights /= torch.sum(comb_weights) ksize = [3, 2, 1] det_score_maps = [] for idx, xx in enumerate([x1, x3, x6_2]): if self.training: instance_max = torch.max(xx) self.moving_avg_params[idx].data = ( self.moving_avg_params[idx] * 0.99 + instance_max.detach() * 0.01 ) else: pass alpha, beta = peakiness_score( xx, self.moving_avg_params[idx].detach(), ksize=3, dilation=ksize[idx] ) score_vol = alpha * beta det_score_map = torch.max(score_vol, dim=1, keepdim=True)[0] det_score_map = F.interpolate( det_score_map, size=x.shape[2:], mode="bilinear", align_corners=True ) det_score_map = comb_weights[idx] * det_score_map det_score_maps.append(det_score_map) det_score_map = torch.sum(torch.stack(det_score_maps, dim=0), dim=0) # print([param.data for param in self.moving_avg_params]) return x6_2, det_score_map, x1, x3