Spaces:
Running
Running
# -*- coding: UTF-8 -*- | |
'''================================================= | |
@Project -> File pram -> retnet | |
@IDE PyCharm | |
@Author fx221@cam.ac.uk | |
@Date 22/02/2024 15:23 | |
==================================================''' | |
# -*- coding: UTF-8 -*- | |
'''================================================= | |
@Project -> File glretrieve -> retnet | |
@IDE PyCharm | |
@Author fx221@cam.ac.uk | |
@Date 15/02/2024 10:55 | |
==================================================''' | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=dilation, groups=groups, bias=False, dilation=dilation) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class ResBlock(nn.Module): | |
def __init__(self, inplanes, outplanes, stride=1, groups=32, dilation=1, norm_layer=None, ac_fn=None): | |
super(ResBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
self.conv1 = conv1x1(inplanes, outplanes) | |
self.bn1 = norm_layer(outplanes) | |
self.conv2 = conv3x3(outplanes, outplanes, stride, groups, dilation) | |
self.bn2 = norm_layer(outplanes) | |
self.conv3 = conv1x1(outplanes, outplanes) | |
self.bn3 = norm_layer(outplanes) | |
if ac_fn is None: | |
self.ac_fn = nn.ReLU(inplace=True) | |
else: | |
self.ac_fn = ac_fn | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.ac_fn(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.ac_fn(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
out += identity | |
out = self.ac_fn(out) | |
return out | |
class GeneralizedMeanPooling(nn.Module): | |
r"""Applies a 2D power-average adaptive pooling over an input signal composed of several input planes. | |
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)` | |
- At p = infinity, one gets Max Pooling | |
- At p = 1, one gets Average Pooling | |
The output is of size H x W, for any input size. | |
The number of output features is equal to the number of input planes. | |
Args: | |
output_size: the target output size of the image of the form H x W. | |
Can be a tuple (H, W) or a single H for a square image H x H | |
H and W can be either a ``int``, or ``None`` which means the size will | |
be the same as that of the input. | |
""" | |
def __init__(self, norm, output_size=1, eps=1e-6): | |
super(GeneralizedMeanPooling, self).__init__() | |
assert norm > 0 | |
self.p = float(norm) | |
self.output_size = output_size | |
self.eps = eps | |
def forward(self, x): | |
x = x.clamp(min=self.eps).pow(self.p) | |
return torch.nn.functional.adaptive_avg_pool2d(x, self.output_size).pow(1. / self.p) | |
def __repr__(self): | |
return self.__class__.__name__ + '(' \ | |
+ str(self.p) + ', ' \ | |
+ 'output_size=' + str(self.output_size) + ')' | |
class GeneralizedMeanPoolingP(GeneralizedMeanPooling): | |
""" Same, but norm is trainable | |
""" | |
def __init__(self, norm=3, output_size=1, eps=1e-6): | |
super(GeneralizedMeanPoolingP, self).__init__(norm, output_size, eps) | |
self.p = nn.Parameter(torch.ones(1) * norm) | |
class Flatten(nn.Module): | |
def forward(self, input): | |
return input.view(input.size(0), -1) | |
class L2Norm(nn.Module): | |
def __init__(self, dim=1): | |
super().__init__() | |
self.dim = dim | |
def forward(self, input): | |
return F.normalize(input, p=2, dim=self.dim) | |
class RetNet(nn.Module): | |
def __init__(self, indim=256, outdim=1024): | |
super().__init__() | |
ac_fn = nn.GELU() | |
self.convs = nn.Sequential( | |
# no batch normalization | |
nn.Conv2d(in_channels=indim, out_channels=512, kernel_size=3, stride=2, padding=1), | |
nn.BatchNorm2d(512), | |
# nn.ReLU(), | |
ResBlock(512, 512, groups=32, stride=1, ac_fn=ac_fn), | |
ResBlock(512, 512, groups=32, stride=1, ac_fn=ac_fn), | |
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=2, padding=1), | |
nn.BatchNorm2d(1024), | |
# nn.ReLU(), | |
ResBlock(inplanes=1024, outplanes=1024, groups=32, stride=1, ac_fn=ac_fn), | |
ResBlock(inplanes=1024, outplanes=1024, groups=32, stride=1, ac_fn=ac_fn), | |
) | |
self.pool = GeneralizedMeanPoolingP() | |
self.fc = nn.Linear(1024, out_features=outdim) | |
def initialize(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, 0, 0.01) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
out = self.convs(x) | |
out = self.pool(out).reshape(x.shape[0], -1) | |
out = self.fc(out) | |
out = F.normalize(out, p=2, dim=1) | |
return out | |
if __name__ == '__main__': | |
mode = RetNet(indim=256, outdim=1024) | |
state_dict = mode.state_dict() | |
keys = state_dict.keys() | |
print(keys) | |
shapes = [state_dict[v].shape for v in keys] | |
print(shapes) | |