Realcat
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
raw
history blame
No virus
30 kB
import logging
import warnings
from copy import deepcopy
from pathlib import Path
import torch
import torch.utils.checkpoint
from torch import nn
from ...settings import DATA_PATH
from ..base_model import BaseModel
from ..utils.metrics import matcher_metrics
warnings.filterwarnings("ignore", category=UserWarning)
ETH_EPS = 1e-8
class GlueStick(BaseModel):
default_conf = {
"input_dim": 256,
"descriptor_dim": 256,
"weights": None,
"version": "v0.1_arxiv",
"keypoint_encoder": [32, 64, 128, 256],
"GNN_layers": ["self", "cross"] * 9,
"num_line_iterations": 1,
"line_attention": False,
"filter_threshold": 0.2,
"checkpointed": False,
"skip_init": False,
"inter_supervision": None,
"loss": {
"nll_weight": 1.0,
"nll_balancing": 0.5,
"inter_supervision": [0.3, 0.6],
},
}
required_data_keys = [
"view0",
"view1",
"keypoints0",
"keypoints1",
"descriptors0",
"descriptors1",
"keypoint_scores0",
"keypoint_scores1",
"lines0",
"lines1",
"lines_junc_idx0",
"lines_junc_idx1",
"line_scores0",
"line_scores1",
]
DEFAULT_LOSS_CONF = {"nll_weight": 1.0, "nll_balancing": 0.5}
url = (
"https://github.com/cvg/GlueStick/releases/download/{}/"
"checkpoint_GlueStick_MD.tar"
)
def _init(self, conf):
if conf.input_dim != conf.descriptor_dim:
self.input_proj = nn.Conv1d(
conf.input_dim, conf.descriptor_dim, kernel_size=1
)
nn.init.constant_(self.input_proj.bias, 0.0)
self.kenc = KeypointEncoder(conf.descriptor_dim, conf.keypoint_encoder)
self.lenc = EndPtEncoder(conf.descriptor_dim, conf.keypoint_encoder)
self.gnn = AttentionalGNN(
conf.descriptor_dim,
conf.GNN_layers,
checkpointed=conf.checkpointed,
inter_supervision=conf.inter_supervision,
num_line_iterations=conf.num_line_iterations,
line_attention=conf.line_attention,
)
self.final_proj = nn.Conv1d(
conf.descriptor_dim, conf.descriptor_dim, kernel_size=1
)
nn.init.constant_(self.final_proj.bias, 0.0)
nn.init.orthogonal_(self.final_proj.weight, gain=1)
self.final_line_proj = nn.Conv1d(
conf.descriptor_dim, conf.descriptor_dim, kernel_size=1
)
nn.init.constant_(self.final_line_proj.bias, 0.0)
nn.init.orthogonal_(self.final_line_proj.weight, gain=1)
if conf.inter_supervision is not None:
self.inter_line_proj = nn.ModuleList(
[
nn.Conv1d(conf.descriptor_dim, conf.descriptor_dim, kernel_size=1)
for _ in conf.inter_supervision
]
)
self.layer2idx = {}
for i, l in enumerate(conf.inter_supervision):
nn.init.constant_(self.inter_line_proj[i].bias, 0.0)
nn.init.orthogonal_(self.inter_line_proj[i].weight, gain=1)
self.layer2idx[l] = i
bin_score = torch.nn.Parameter(torch.tensor(1.0))
self.register_parameter("bin_score", bin_score)
line_bin_score = torch.nn.Parameter(torch.tensor(1.0))
self.register_parameter("line_bin_score", line_bin_score)
if conf.weights:
assert isinstance(conf.weights, (Path, str))
fname = DATA_PATH / "weights" / f"{conf.weights}_{conf.version}.tar"
fname.parent.mkdir(exist_ok=True, parents=True)
if Path(conf.weights).exists():
logging.info(f'Loading GlueStick model from "{conf.weights}"')
state_dict = torch.load(conf.weights, map_location="cpu")
elif fname.exists():
logging.info(f'Loading GlueStick model from "{fname}"')
state_dict = torch.load(fname, map_location="cpu")
else:
logging.info(
"Loading GlueStick model from " f'"{self.url.format(conf.version)}"'
)
state_dict = torch.hub.load_state_dict_from_url(
self.url.format(conf.version), file_name=fname, map_location="cpu"
)
if "model" in state_dict:
state_dict = {
k.replace("matcher.", ""): v
for k, v in state_dict["model"].items()
if "matcher." in k
}
state_dict = {
k.replace("module.", ""): v for k, v in state_dict.items()
}
self.load_state_dict(state_dict, strict=False)
def _forward(self, data):
device = data["keypoints0"].device
b_size = len(data["keypoints0"])
image_size0 = (
data["view0"]["image_size"]
if "image_size" in data["view0"]
else data["view0"]["image"].shape
)
image_size1 = (
data["view1"]["image_size"]
if "image_size" in data["view1"]
else data["view1"]["image"].shape
)
pred = {}
desc0, desc1 = data["descriptors0"].mT, data["descriptors1"].mT
kpts0, kpts1 = data["keypoints0"], data["keypoints1"]
n_kpts0, n_kpts1 = kpts0.shape[1], kpts1.shape[1]
n_lines0, n_lines1 = data["lines0"].shape[1], data["lines1"].shape[1]
if n_kpts0 == 0 or n_kpts1 == 0:
# No detected keypoints nor lines
pred["log_assignment"] = torch.zeros(
b_size, n_kpts0, n_kpts1, dtype=torch.float, device=device
)
pred["matches0"] = torch.full(
(b_size, n_kpts0), -1, device=device, dtype=torch.int64
)
pred["matches1"] = torch.full(
(b_size, n_kpts1), -1, device=device, dtype=torch.int64
)
pred["matching_scores0"] = torch.zeros(
(b_size, n_kpts0), device=device, dtype=torch.float32
)
pred["matching_scores1"] = torch.zeros(
(b_size, n_kpts1), device=device, dtype=torch.float32
)
pred["line_log_assignment"] = torch.zeros(
b_size, n_lines0, n_lines1, dtype=torch.float, device=device
)
pred["line_matches0"] = torch.full(
(b_size, n_lines0), -1, device=device, dtype=torch.int64
)
pred["line_matches1"] = torch.full(
(b_size, n_lines1), -1, device=device, dtype=torch.int64
)
pred["line_matching_scores0"] = torch.zeros(
(b_size, n_lines0), device=device, dtype=torch.float32
)
pred["line_matching_scores1"] = torch.zeros(
(b_size, n_kpts1), device=device, dtype=torch.float32
)
return pred
lines0 = data["lines0"].flatten(1, 2)
lines1 = data["lines1"].flatten(1, 2)
# [b_size, num_lines * 2]
lines_junc_idx0 = data["lines_junc_idx0"].flatten(1, 2)
lines_junc_idx1 = data["lines_junc_idx1"].flatten(1, 2)
if self.conf.input_dim != self.conf.descriptor_dim:
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
kpts0 = normalize_keypoints(kpts0, image_size0)
kpts1 = normalize_keypoints(kpts1, image_size1)
desc0 = desc0 + self.kenc(kpts0, data["keypoint_scores0"])
desc1 = desc1 + self.kenc(kpts1, data["keypoint_scores1"])
if n_lines0 != 0 and n_lines1 != 0:
# Pre-compute the line encodings
lines0 = normalize_keypoints(lines0, image_size0).reshape(
b_size, n_lines0, 2, 2
)
lines1 = normalize_keypoints(lines1, image_size1).reshape(
b_size, n_lines1, 2, 2
)
line_enc0 = self.lenc(lines0, data["line_scores0"])
line_enc1 = self.lenc(lines1, data["line_scores1"])
else:
line_enc0 = torch.zeros(
b_size,
self.conf.descriptor_dim,
n_lines0 * 2,
dtype=torch.float,
device=device,
)
line_enc1 = torch.zeros(
b_size,
self.conf.descriptor_dim,
n_lines1 * 2,
dtype=torch.float,
device=device,
)
desc0, desc1 = self.gnn(
desc0, desc1, line_enc0, line_enc1, lines_junc_idx0, lines_junc_idx1
)
# Match all points (KP and line junctions)
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
kp_scores = torch.einsum("bdn,bdm->bnm", mdesc0, mdesc1)
kp_scores = kp_scores / self.conf.descriptor_dim**0.5
kp_scores = log_double_softmax(kp_scores, self.bin_score)
m0, m1, mscores0, mscores1 = self._get_matches(kp_scores)
pred["log_assignment"] = kp_scores
pred["matches0"] = m0
pred["matches1"] = m1
pred["matching_scores0"] = mscores0
pred["matching_scores1"] = mscores1
# Match the lines
if n_lines0 > 0 and n_lines1 > 0:
(
line_scores,
m0_lines,
m1_lines,
mscores0_lines,
mscores1_lines,
raw_line_scores,
) = self._get_line_matches(
desc0[:, :, : 2 * n_lines0],
desc1[:, :, : 2 * n_lines1],
lines_junc_idx0,
lines_junc_idx1,
self.final_line_proj,
)
if self.conf.inter_supervision:
for layer in self.conf.inter_supervision:
(
line_scores_i,
m0_lines_i,
m1_lines_i,
mscores0_lines_i,
mscores1_lines_i,
_,
) = self._get_line_matches(
self.gnn.inter_layers[layer][0][:, :, : 2 * n_lines0],
self.gnn.inter_layers[layer][1][:, :, : 2 * n_lines1],
lines_junc_idx0,
lines_junc_idx1,
self.inter_line_proj[self.layer2idx[layer]],
)
pred[f"line_{layer}_log_assignment"] = line_scores_i
pred[f"line_{layer}_matches0"] = m0_lines_i
pred[f"line_{layer}_matches1"] = m1_lines_i
pred[f"line_{layer}_matching_scores0"] = mscores0_lines_i
pred[f"line_{layer}_matching_scores1"] = mscores1_lines_i
else:
line_scores = torch.zeros(
b_size, n_lines0, n_lines1, dtype=torch.float, device=device
)
m0_lines = torch.full(
(b_size, n_lines0), -1, device=device, dtype=torch.int64
)
m1_lines = torch.full(
(b_size, n_lines1), -1, device=device, dtype=torch.int64
)
mscores0_lines = torch.zeros(
(b_size, n_lines0), device=device, dtype=torch.float32
)
mscores1_lines = torch.zeros(
(b_size, n_lines1), device=device, dtype=torch.float32
)
raw_line_scores = torch.zeros(
b_size, n_lines0, n_lines1, dtype=torch.float, device=device
)
pred["line_log_assignment"] = line_scores
pred["line_matches0"] = m0_lines
pred["line_matches1"] = m1_lines
pred["line_matching_scores0"] = mscores0_lines
pred["line_matching_scores1"] = mscores1_lines
pred["raw_line_scores"] = raw_line_scores
return pred
def _get_matches(self, scores_mat):
max0 = scores_mat[:, :-1, :-1].max(2)
max1 = scores_mat[:, :-1, :-1].max(1)
m0, m1 = max0.indices, max1.indices
mutual0 = arange_like(m0, 1)[None] == m1.gather(1, m0)
mutual1 = arange_like(m1, 1)[None] == m0.gather(1, m1)
zero = scores_mat.new_tensor(0)
mscores0 = torch.where(mutual0, max0.values.exp(), zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero)
valid0 = mutual0 & (mscores0 > self.conf.filter_threshold)
valid1 = mutual1 & valid0.gather(1, m1)
m0 = torch.where(valid0, m0, m0.new_tensor(-1))
m1 = torch.where(valid1, m1, m1.new_tensor(-1))
return m0, m1, mscores0, mscores1
def _get_line_matches(
self, ldesc0, ldesc1, lines_junc_idx0, lines_junc_idx1, final_proj
):
mldesc0 = final_proj(ldesc0)
mldesc1 = final_proj(ldesc1)
line_scores = torch.einsum("bdn,bdm->bnm", mldesc0, mldesc1)
line_scores = line_scores / self.conf.descriptor_dim**0.5
# Get the line representation from the junction descriptors
n2_lines0 = lines_junc_idx0.shape[1]
n2_lines1 = lines_junc_idx1.shape[1]
line_scores = torch.gather(
line_scores,
dim=2,
index=lines_junc_idx1[:, None, :].repeat(1, line_scores.shape[1], 1),
)
line_scores = torch.gather(
line_scores,
dim=1,
index=lines_junc_idx0[:, :, None].repeat(1, 1, n2_lines1),
)
line_scores = line_scores.reshape((-1, n2_lines0 // 2, 2, n2_lines1 // 2, 2))
# Match either in one direction or the other
raw_line_scores = 0.5 * torch.maximum(
line_scores[:, :, 0, :, 0] + line_scores[:, :, 1, :, 1],
line_scores[:, :, 0, :, 1] + line_scores[:, :, 1, :, 0],
)
line_scores = log_double_softmax(raw_line_scores, self.line_bin_score)
m0_lines, m1_lines, mscores0_lines, mscores1_lines = self._get_matches(
line_scores
)
return (
line_scores,
m0_lines,
m1_lines,
mscores0_lines,
mscores1_lines,
raw_line_scores,
)
def sub_loss(self, pred, data, losses, bin_score, prefix="", layer=-1):
line_suffix = "" if layer == -1 else f"{layer}_"
layer_weight = (
1.0
if layer == -1
else self.conf.loss.inter_supervision[self.layer2idx[layer]]
)
positive = data["gt_" + prefix + "assignment"].float()
num_pos = torch.max(positive.sum((1, 2)), positive.new_tensor(1))
neg0 = (data["gt_" + prefix + "matches0"] == -1).float()
neg1 = (data["gt_" + prefix + "matches1"] == -1).float()
num_neg = torch.max(neg0.sum(1) + neg1.sum(1), neg0.new_tensor(1))
log_assignment = pred[prefix + line_suffix + "log_assignment"]
nll_pos = -(log_assignment[:, :-1, :-1] * positive).sum((1, 2))
nll_pos /= num_pos
nll_neg0 = -(log_assignment[:, :-1, -1] * neg0).sum(1)
nll_neg1 = -(log_assignment[:, -1, :-1] * neg1).sum(1)
nll_neg = (nll_neg0 + nll_neg1) / num_neg
nll = (
self.conf.loss.nll_balancing * nll_pos
+ (1 - self.conf.loss.nll_balancing) * nll_neg
)
losses[prefix + line_suffix + "assignment_nll"] = nll
if self.conf.loss.nll_weight > 0:
losses["total"] += nll * self.conf.loss.nll_weight * layer_weight
# Some statistics
if line_suffix == "":
losses[prefix + "num_matchable"] = num_pos
losses[prefix + "num_unmatchable"] = num_neg
losses[prefix + "sinkhorn_norm"] = (
log_assignment.exp()[:, :-1].sum(2).mean(1)
)
losses[prefix + "bin_score"] = bin_score[None]
return losses
def loss(self, pred, data):
losses = {"total": 0}
# If there are keypoints add their loss terms
if not (data["keypoints0"].shape[1] == 0 or data["keypoints1"].shape[1] == 0):
losses = self.sub_loss(pred, data, losses, self.bin_score, prefix="")
# If there are lines add their loss terms
if (
"lines0" in data
and "lines1" in data
and data["lines0"].shape[1] > 0
and data["lines1"].shape[1] > 0
):
losses = self.sub_loss(
pred, data, losses, self.line_bin_score, prefix="line_"
)
if self.conf.inter_supervision:
for layer in self.conf.inter_supervision:
losses = self.sub_loss(
pred, data, losses, self.line_bin_score, prefix="line_", layer=layer
)
# Compute the metrics
metrics = {}
if not self.training:
if (
"matches0" in pred
and pred["matches0"].shape[1] > 0
and pred["matches1"].shape[1] > 0
):
metrics = {**metrics, **matcher_metrics(pred, data, prefix="")}
if (
"line_matches0" in pred
and data["lines0"].shape[1] > 0
and data["lines1"].shape[1] > 0
):
metrics = {**metrics, **matcher_metrics(pred, data, prefix="line_")}
if self.conf.inter_supervision:
for layer in self.conf.inter_supervision:
inter_metrics = matcher_metrics(
pred, data, prefix=f"line_{layer}_", prefix_gt="line_"
)
metrics = {**metrics, **inter_metrics}
return losses, metrics
def MLP(channels, do_bn=True):
n = len(channels)
layers = []
for i in range(1, n):
layers.append(nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True))
if i < (n - 1):
if do_bn:
layers.append(nn.BatchNorm1d(channels[i]))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def normalize_keypoints(kpts, shape_or_size):
if isinstance(shape_or_size, (tuple, list)):
# it"s a shape
h, w = shape_or_size[-2:]
size = kpts.new_tensor([[w, h]])
else:
# it"s a size
assert isinstance(shape_or_size, torch.Tensor)
size = shape_or_size.to(kpts)
c = size / 2
f = size.max(1, keepdim=True).values * 0.7 # somehow we used 0.7 for SG
return (kpts - c[:, None, :]) / f[:, None, :]
class KeypointEncoder(nn.Module):
def __init__(self, feature_dim, layers):
super().__init__()
self.encoder = MLP([3] + list(layers) + [feature_dim], do_bn=True)
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, kpts, scores):
inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)]
return self.encoder(torch.cat(inputs, dim=1))
class EndPtEncoder(nn.Module):
def __init__(self, feature_dim, layers):
super().__init__()
self.encoder = MLP([5] + list(layers) + [feature_dim], do_bn=True)
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, endpoints, scores):
# endpoints should be [B, N, 2, 2]
# output is [B, feature_dim, N * 2]
b_size, n_pts, _, _ = endpoints.shape
assert tuple(endpoints.shape[-2:]) == (2, 2)
endpt_offset = (endpoints[:, :, 1] - endpoints[:, :, 0]).unsqueeze(2)
endpt_offset = torch.cat([endpt_offset, -endpt_offset], dim=2)
endpt_offset = endpt_offset.reshape(b_size, 2 * n_pts, 2).transpose(1, 2)
inputs = [
endpoints.flatten(1, 2).transpose(1, 2),
endpt_offset,
scores.repeat(1, 2).unsqueeze(1),
]
return self.encoder(torch.cat(inputs, dim=1))
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def attention(query, key, value):
dim = query.shape[1]
scores = torch.einsum("bdhn,bdhm->bhnm", query, key) / dim**0.5
prob = torch.nn.functional.softmax(scores, dim=-1)
return torch.einsum("bhnm,bdhm->bdhn", prob, value), prob
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model):
super().__init__()
assert d_model % h == 0
self.dim = d_model // h
self.h = h
self.merge = nn.Conv1d(d_model, d_model, kernel_size=1)
self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)])
# self.prob = []
def forward(self, query, key, value):
b = query.size(0)
query, key, value = [
layer(x).view(b, self.dim, self.h, -1)
for layer, x in zip(self.proj, (query, key, value))
]
x, prob = attention(query, key, value)
# self.prob.append(prob.mean(dim=1))
return self.merge(x.contiguous().view(b, self.dim * self.h, -1))
class AttentionalPropagation(nn.Module):
def __init__(self, num_dim, num_heads, skip_init=False):
super().__init__()
self.attn = MultiHeadedAttention(num_heads, num_dim)
self.mlp = MLP([num_dim * 2, num_dim * 2, num_dim], do_bn=True)
nn.init.constant_(self.mlp[-1].bias, 0.0)
if skip_init:
self.register_parameter("scaling", nn.Parameter(torch.tensor(0.0)))
else:
self.scaling = 1.0
def forward(self, x, source):
message = self.attn(x, source, source)
return self.mlp(torch.cat([x, message], dim=1)) * self.scaling
class GNNLayer(nn.Module):
def __init__(self, feature_dim, layer_type, skip_init):
super().__init__()
assert layer_type in ["cross", "self"]
self.type = layer_type
self.update = AttentionalPropagation(feature_dim, 4, skip_init)
def forward(self, desc0, desc1):
if self.type == "cross":
src0, src1 = desc1, desc0
elif self.type == "self":
src0, src1 = desc0, desc1
else:
raise ValueError("Unknown layer type: " + self.type)
# self.update.attn.prob = []
delta0, delta1 = self.update(desc0, src0), self.update(desc1, src1)
desc0, desc1 = (desc0 + delta0), (desc1 + delta1)
return desc0, desc1
class LineLayer(nn.Module):
def __init__(self, feature_dim, line_attention=False):
super().__init__()
self.dim = feature_dim
self.mlp = MLP([self.dim * 3, self.dim * 2, self.dim], do_bn=True)
self.line_attention = line_attention
if line_attention:
self.proj_node = nn.Conv1d(self.dim, self.dim, kernel_size=1)
self.proj_neigh = nn.Conv1d(2 * self.dim, self.dim, kernel_size=1)
def get_endpoint_update(self, ldesc, line_enc, lines_junc_idx):
# ldesc is [bs, D, n_junc], line_enc [bs, D, n_lines * 2]
# and lines_junc_idx [bs, n_lines * 2]
# Create one message per line endpoint
b_size = lines_junc_idx.shape[0]
line_desc = torch.gather(
ldesc, 2, lines_junc_idx[:, None].repeat(1, self.dim, 1)
)
line_desc2 = line_desc.reshape(b_size, self.dim, -1, 2).flip([-1])
message = torch.cat(
[line_desc, line_desc2.flatten(2, 3).clone(), line_enc], dim=1
)
return self.mlp(message) # [b_size, D, n_lines * 2]
def get_endpoint_attention(self, ldesc, line_enc, lines_junc_idx):
# ldesc is [bs, D, n_junc], line_enc [bs, D, n_lines * 2]
# and lines_junc_idx [bs, n_lines * 2]
b_size = lines_junc_idx.shape[0]
expanded_lines_junc_idx = lines_junc_idx[:, None].repeat(1, self.dim, 1)
# Query: desc of the current node
query = self.proj_node(ldesc) # [b_size, D, n_junc]
query = torch.gather(query, 2, expanded_lines_junc_idx)
# query is [b_size, D, n_lines * 2]
# Key: combination of neighboring desc and line encodings
line_desc = torch.gather(ldesc, 2, expanded_lines_junc_idx)
line_desc2 = line_desc.reshape(b_size, self.dim, -1, 2).flip([-1])
key = self.proj_neigh(
torch.cat([line_desc2.flatten(2, 3).clone(), line_enc], dim=1)
) # [b_size, D, n_lines * 2]
# Compute the attention weights with a custom softmax per junction
prob = (query * key).sum(dim=1) / self.dim**0.5 # [b_size, n_lines * 2]
prob = torch.exp(prob - prob.max())
denom = torch.zeros_like(ldesc[:, 0]).scatter_reduce_(
dim=1, index=lines_junc_idx, src=prob, reduce="sum", include_self=False
) # [b_size, n_junc]
denom = torch.gather(denom, 1, lines_junc_idx) # [b_size, n_lines * 2]
prob = prob / (denom + ETH_EPS)
return prob # [b_size, n_lines * 2]
def forward(
self, ldesc0, ldesc1, line_enc0, line_enc1, lines_junc_idx0, lines_junc_idx1
):
# Gather the endpoint updates
lupdate0 = self.get_endpoint_update(ldesc0, line_enc0, lines_junc_idx0)
lupdate1 = self.get_endpoint_update(ldesc1, line_enc1, lines_junc_idx1)
update0, update1 = torch.zeros_like(ldesc0), torch.zeros_like(ldesc1)
dim = ldesc0.shape[1]
if self.line_attention:
# Compute an attention for each neighbor and do a weighted average
prob0 = self.get_endpoint_attention(ldesc0, line_enc0, lines_junc_idx0)
lupdate0 = lupdate0 * prob0[:, None]
update0 = update0.scatter_reduce_(
dim=2,
index=lines_junc_idx0[:, None].repeat(1, dim, 1),
src=lupdate0,
reduce="sum",
include_self=False,
)
prob1 = self.get_endpoint_attention(ldesc1, line_enc1, lines_junc_idx1)
lupdate1 = lupdate1 * prob1[:, None]
update1 = update1.scatter_reduce_(
dim=2,
index=lines_junc_idx1[:, None].repeat(1, dim, 1),
src=lupdate1,
reduce="sum",
include_self=False,
)
else:
# Average the updates for each junction (requires torch > 1.12)
update0 = update0.scatter_reduce_(
dim=2,
index=lines_junc_idx0[:, None].repeat(1, dim, 1),
src=lupdate0,
reduce="mean",
include_self=False,
)
update1 = update1.scatter_reduce_(
dim=2,
index=lines_junc_idx1[:, None].repeat(1, dim, 1),
src=lupdate1,
reduce="mean",
include_self=False,
)
# Update
ldesc0 = ldesc0 + update0
ldesc1 = ldesc1 + update1
return ldesc0, ldesc1
class AttentionalGNN(nn.Module):
def __init__(
self,
feature_dim,
layer_types,
checkpointed=False,
skip=False,
inter_supervision=None,
num_line_iterations=1,
line_attention=False,
):
super().__init__()
self.checkpointed = checkpointed
self.inter_supervision = inter_supervision
self.num_line_iterations = num_line_iterations
self.inter_layers = {}
self.layers = nn.ModuleList(
[GNNLayer(feature_dim, layer_type, skip) for layer_type in layer_types]
)
self.line_layers = nn.ModuleList(
[
LineLayer(feature_dim, line_attention)
for _ in range(len(layer_types) // 2)
]
)
def forward(
self, desc0, desc1, line_enc0, line_enc1, lines_junc_idx0, lines_junc_idx1
):
for i, layer in enumerate(self.layers):
if self.checkpointed:
desc0, desc1 = torch.utils.checkpoint.checkpoint(
layer, desc0, desc1, preserve_rng_state=False
)
else:
desc0, desc1 = layer(desc0, desc1)
if (
layer.type == "self"
and lines_junc_idx0.shape[1] > 0
and lines_junc_idx1.shape[1] > 0
):
# Add line self attention layers after every self layer
for _ in range(self.num_line_iterations):
if self.checkpointed:
desc0, desc1 = torch.utils.checkpoint.checkpoint(
self.line_layers[i // 2],
desc0,
desc1,
line_enc0,
line_enc1,
lines_junc_idx0,
lines_junc_idx1,
preserve_rng_state=False,
)
else:
desc0, desc1 = self.line_layers[i // 2](
desc0,
desc1,
line_enc0,
line_enc1,
lines_junc_idx0,
lines_junc_idx1,
)
# Optionally store the line descriptor at intermediate layers
if (
self.inter_supervision is not None
and (i // 2) in self.inter_supervision
and layer.type == "cross"
):
self.inter_layers[i // 2] = (desc0.clone(), desc1.clone())
return desc0, desc1
def log_double_softmax(scores, bin_score):
b, m, n = scores.shape
bin_ = bin_score[None, None, None]
scores0 = torch.cat([scores, bin_.expand(b, m, 1)], 2)
scores1 = torch.cat([scores, bin_.expand(b, 1, n)], 1)
scores0 = torch.nn.functional.log_softmax(scores0, 2)
scores1 = torch.nn.functional.log_softmax(scores1, 1)
scores = scores.new_full((b, m + 1, n + 1), 0)
scores[:, :m, :n] = (scores0[:, :, :n] + scores1[:, :m, :]) / 2
scores[:, :-1, -1] = scores0[:, :, -1]
scores[:, -1, :-1] = scores1[:, -1, :]
return scores
def arange_like(x, dim):
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1