import argparse from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria import torch import os import json from tqdm import tqdm import shortuuid from llava_phi.conversation import default_conversation from llava_phi.utils import disable_torch_init # new stopping implementation class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.tokenizer = tokenizer self.start_len = None self.input_ids = input_ids def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: if self.start_len is None: self.start_len = self.input_ids.shape[1] else: outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False @torch.inference_mode() def eval_model(model_name, questions_file, answers_file): # Model disable_torch_init() model_name = os.path.expanduser(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda() ques_file = open(os.path.expanduser(questions_file), "r") ans_file = open(os.path.expanduser(answers_file), "w") for i, line in enumerate(tqdm(ques_file)): idx = json.loads(line)["question_id"] qs = json.loads(line)["text"] cat = json.loads(line)["category"] conv = default_conversation.copy() conv.append_message(conv.roles[0], qs) prompt = conv.get_prompt() inputs = tokenizer([prompt]) input_ids = torch.as_tensor(inputs.input_ids).cuda() # stopping_criteria = KeywordsStoppingCriteria([conv.sep], tokenizer, input_ids) output_ids = model.generate( input_ids, do_sample=True, use_cache=True, temperature=0.7, max_new_tokens=1024, eos_token_id=tokenizer.eos_token_id, # End of sequence token pad_token_id=tokenizer.eos_token_id, # Pad token # stopping_criteria=[stopping_criteria] ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] try: index = outputs.index(conv.sep, len(prompt)) except ValueError: outputs += conv.sep index = outputs.index(conv.sep, len(prompt)) outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip() ans_id = shortuuid.uuid() ans_file.write(json.dumps({"question_id": idx, "text": outputs, "answer_id": ans_id, "model_id": model_name, "metadata": {}}) + "\n") ans_file.flush() ans_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-name", type=str, default="facebook/opt-350m") parser.add_argument("--question-file", type=str, default="tables/question.jsonl") parser.add_argument("--answers-file", type=str, default="answer.jsonl") args = parser.parse_args() eval_model(args.model_name, args.question_file, args.answers_file)