import pickle from minisom import MiniSom import numpy as np from fastapi import FastAPI, HTTPException from pydantic import BaseModel from typing import List from scipy.ndimage import median_filter from scipy.signal import convolve2d import cv2 import math class InputData(BaseModel): data: List[float] # Lista de características numéricas (floats) app = FastAPI() def build_model(): with open('somlucuma.pkl', 'rb') as fid: somhuella = pickle.load(fid) MM = np.loadtxt('matrizMM.txt', delimiter=" ") return somhuella,MM def sobel(patron): gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32) gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=np.float32) Gx = convolve2d(patron, gx, mode='valid') Gy = convolve2d(patron, gy, mode='valid') return Gx, Gy def medfilt2(G, d=3): return median_filter(G, size=d) def orientacion(patron, w): Gx, Gy = sobel(patron) Gx = medfilt2(Gx) Gy = medfilt2(Gy) m, n = Gx.shape mOrientaciones = np.zeros((m // w, n // w), dtype=np.float32) for i in range(m // w): for j in range(n // w): Gx_patch = Gx[i*w:(i+1)*w, j*w:(j+1)*w] Gy_patch = Gy[i*w:(i+1)*w, j*w:(j+1)*w] YY = np.sum(2 * Gx_patch * Gy_patch) XX = np.sum(Gx_patch**2 - Gy_patch**2) mOrientaciones[i, j] = (0.5 * np.arctan2(YY, XX) + np.pi / 2.0) * (18.0 / np.pi) return mOrientaciones def redimensionar(img, h, v): return cv2.resize(img, (h, v), interpolation=cv2.INTER_AREA) def testeo(som,archivo): Xtest = redimensionar(archivo,256,256) Xtest = np.array(Xtest) Xtest = Xtest.astype('float32') / 255.0 Xtest = cv2.cvtColor(Xtest, cv2.COLOR_BGR2GRAY) orientaciones = orientacion(Xtest, w=14) orientaciones = orientaciones.reshape(-1) Xtest = np.concatenate([orientaciones.ravel()]) return som.winner(Xtest) som, MM = build_model() # Construir modelo @app.post("/predict/") async def predict(data: InputData): print(f"Data: {data}") global som global MM try: #input_data = np.array(data.data).reshape(256, 256, 3) #representative_data = representativo(input_data) #representative_data = representative_data.reshape(1, -1) w = testeo(som,data.data) prediction = MM[w] return {"prediction": prediction} except Exception as e: raise HTTPException(status_code=500, detail=str(e))