import numpy as np import cv2 import albumentations as A from utils import * import random from albumentations.pytorch import ToTensorV2 from yolov3 import YOLOV3_PL from pytorch_grad_cam.utils.image import show_cam_on_image from utils import YoloCAM, cells_to_bboxes, non_max_suppression from model import YOLOv3 def inference(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.5,show_cam: bool = False, transparency: float = 0.5): model = YOLOV3_PL() #YOLOv3(num_classes=20) model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False) # iou_thresh = 0.75 # thresh = 0.75 scaled_anchors = config.SCALED_ANCHORS backbone = model target_layer_list = list(backbone.children())[-2:] cam = YoloCAM(model=model, target_layers = target_layer_list, use_cuda=False) transforms = A.Compose( [ A.LongestMaxSize(max_size=config.IMAGE_SIZE), A.PadIfNeeded( min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT ), A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), ToTensorV2(), ], ) with torch.no_grad(): transformed_image = transforms(image=image)["image"].unsqueeze(0) output = model(transformed_image) bboxes = [[] for _ in range(1)] for i in range(3): batch_size, A1, S, _, _ = output[i].shape anchor = scaled_anchors[i].to('cpu') boxes_scale_i = cells_to_bboxes( output[i].to('cpu'), anchor, S=S, is_preds=True ) for idx, (box) in enumerate(boxes_scale_i): bboxes[idx] += box nms_boxes = non_max_suppression( bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint", ) plot_img = draw_predictions(image, nms_boxes, class_labels=config.PASCAL_CLASSES) if not show_cam: return [plot_img] grayscale_cam = cam(transformed_image, scaled_anchors)[0, :, :] img = cv2.resize(image, (416, 416)) img = np.float32(img) / 255 cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency) return [plot_img, cam_image] def draw_predictions(image: np.ndarray, boxes: list[list], class_labels: list[str]) -> np.ndarray: """Plots predicted bounding boxes on the image""" colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels] im = np.array(image) height, width, _ = im.shape bbox_thick = int((height + width) /500) # Create a Rectangle patch for box in boxes: assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height" class_pred = box[0] conf = box[1] box = box[2:] upper_left_x = box[0] - box[2] / 2 upper_left_y = box[1] - box[3] / 2 x1 = int(upper_left_x * width) y1 = int(upper_left_y * height) x2 = x1 + int(box[2] * width) y2 = y1 + int(box[3] * height) cv2.rectangle( image, (x1, y1), (x2, y2), color=colors[int(class_pred)], thickness=bbox_thick ) text = f"{class_labels[int(class_pred)]}: {conf:.2f}" t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0] c3 = (x1 + t_size[0], y1 - t_size[1] - 3) cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1) cv2.putText( image, text, (x1, y1 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), bbox_thick // 2, lineType=cv2.LINE_AA, ) return image