import torch class RMSNorm(torch.nn.Module): """Root Mean Square Layer Normalization. Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE. """ def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None: super().__init__() self.weight = torch.nn.Parameter(torch.ones(size)) self.eps = eps self.dim = dim def forward(self, x: torch.Tensor) -> torch.Tensor: dtype = x.dtype x = x.float() # NOTE: the original RMSNorm paper implementation is not equivalent norm_x = torch.mean(x * x, dim=self.dim, keepdim=True) x_normed = x * torch.rsqrt(norm_x + self.eps) return (self.weight * x_normed).to(dtype=dtype) def reset_parameters(self) -> None: torch.nn.init.ones_(self.weight)