# -*- coding: utf-8 -*- """S22.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1pq0UO46D0emoqF8rPuD4cUznmYVSMESO """ # Commented out IPython magic to ensure Python compatibility. # %pip install lightning -q import torch import glob import math import sys import time from pathlib import Path from typing import Optional, Tuple, Union import lightning as L from lightning.fabric.loggers import CSVLogger from lightning.fabric.strategies import FSDPStrategy from tsai_gpt.model import GPT, Block, Config from tsai_gpt.packed_dataset import CombinedDataset, PackedDataset from tsai_gpt.speed_monitor import SpeedMonitorBase, estimate_flops, measure_flops from tsai_gpt.speed_monitor import SpeedMonitorFabric as SpeedMonitor from tsai_gpt.utils import chunked_cross_entropy, get_default_supported_precision, num_parameters, load_checkpoint import os import pickle from contextlib import nullcontext from torch.utils.data import DataLoader import torch.nn.functional as F from tsai_gpt.tokenizer import Tokenizer import gradio as gr model_name = "pythia-160m" name = "redpajama" out_dir = Path("out") / name log_interval = 100 hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")} logger = CSVLogger("out", name, flush_logs_every_n_steps=log_interval) fabric = L.Fabric(devices=1, strategy='auto', precision=None, loggers=logger) #print(model.transformer.h[0].mlp.fc.weight) def generate( model, config, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ idx = idx.unsqueeze(dim=0) for _ in range(max_new_tokens): # # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= config.block_size else idx[ :,-config.block_size:] # forward the model to get the logits for the index in the sequence idx_cd = idx logits = model(idx_cd) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx checkpoint_dir = Path('./checkpoints/meta-llama/Llama-2-7b-chat-hf') token = Tokenizer(checkpoint_dir = checkpoint_dir) def tsaigpt(start:str , max_new_tokens = 300, num_samples =2, tokeniser= token): # ----------------------------------------------------------------------------- temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability seed = 1337 device = 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16' compile = False # use PyTorch 2.0 to compile the model to be faster #exec(open('configurator.py').read()) # overrides from command line or config file # ----------------------------------------------------------------------------- torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) checkpoint_path = Path("out/redpajama/iter-031997-ckpt.pth") config = Config.from_name(model_name) model = GPT(config) load_checkpoint(fabric, model, checkpoint_path) #print(model) model.eval() model.to(device) if compile: model = torch.compile(model) # requires PyTorch 2.0 (optional) start_ids = tokeniser.encode(start).to(device) #x = torch.tensor(start_ids, dtype=torch.long, device=device).clone().detach() # run generation with torch.no_grad(): with ctx: y = generate(model =model, config =config , max_new_tokens = max_new_tokens, idx = start_ids ,temperature=1.0, top_k=None) #print(decode(y[0].tolist())) output = tokeniser.decode(y[0]) return output INTERFACE = gr.Interface(fn=tsaigpt, inputs=[gr.Textbox(label= "Prompt", value= 'We know what we are, but know not what we may be'), gr.Slider(minimum = 300, maximum = 500, value= 300, label= "Maximum number of tokens to be generated")] , outputs=gr.Text(label= "Generated Text"), title="TSAI_GPT", description="TSAIGPT is a transformer-based language model with only 0.16 billion parameters, trained on RedPajama 1T Sample.", examples = [['We know what we are, but know not what we may be',300],] ).launch(debug=True)