# AUTOGENERATED! DO NOT EDIT! File to edit: ../../A_Practical_Deep_Learning/Untitled.ipynb. # %% auto 0 __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image'] # %% ../../A_Practical_Deep_Learning/Untitled.ipynb 1 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% ../../A_Practical_Deep_Learning/Untitled.ipynb 4 learn = load_learner("model (1).pkl") # %% ../../A_Practical_Deep_Learning/Untitled.ipynb 6 categories = ('Dog', 'Cat') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) # %% ../../A_Practical_Deep_Learning/Untitled.ipynb 8 image = gr.components.Image(shape=(192,192)) label = gr.components.Label() # examples = [r"C:\Users\Kush\Downloads\dog.jpg", r"C:\Users\Kush\Downloads\scared-hamster.jpg", r"C:\Users\Kush\Downloads\Converse Welcomes Baby Keem to the Family.png"] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label) intf.launch(inline=False, share=True) # %%