# import pandas as pd import polars as pl import numpy as np from gradio_client import Client from tqdm.auto import tqdm import os import re from translate import ( translate_pa_outcome, translate_pitch_outcome, jp_pitch_to_en_pitch, jp_pitch_to_pitch_code, max_pitch_types ) # load game data # game_df = pd.read_csv('game.csv').drop_duplicates() game_df = pl.read_csv('game.csv').unique() assert len(game_df) == len(game_df['game_pk'].unique()) # load pa data pa_df = [] # for game_pk in tqdm(game_df['game_pk']): # pa_df.append(pd.read_csv(os.path.join('pa', f'{game_pk}.csv'), dtype={'pa_pk': str})) # pa_df = pd.concat(pa_df, axis='rows') for game_pk in tqdm(game_df['game_pk']): pa_df.append(pl.read_csv(os.path.join('pa', f'{game_pk}.csv'), schema_overrides={'pa_pk': str})) pa_df = pl.concat(pa_df) # load pitch data pitch_df = [] # for game_pk in tqdm(game_df['game_pk']): # pitch_df.append(pd.read_csv(os.path.join('pitch', f'{game_pk}.csv'), dtype={'pa_pk': str})) # pitch_df = pd.concat(pitch_df, axis='rows') for game_pk in tqdm(game_df['game_pk']): pitch_df.append(pl.read_csv(os.path.join('pitch', f'{game_pk}.csv'), schema_overrides={'pa_pk': str, 'on_1b': pl.Int64, 'on_2b': pl.Int64, 'on_3b': pl.Int64})) pitch_df = pl.concat(pitch_df) # load player data player_df = pl.read_csv('player.csv') # translate pa data # pa_df['_des'] = pa_df['des'].str.strip() # pa_df['des'] = pa_df['des'].str.strip() # pa_df['des_more'] = pa_df['des_more'].str.strip() # pa_df.loc[pa_df['des'].isna(), 'des'] = pa_df[pa_df['des'].isna()]['des_more'] # pa_df.loc[:, 'des'] = pa_df['des'].apply(lambda item: item.split()[0] if (len(item.split()) > 1 and re.search(r'+\d+点', item)) else item) # non_home_plate_outcome = (pa_df['des'].isin(['ボール', '見逃し', '空振り'])) | (pa_df['des'].str.endswith('塁けん制')) # pa_df.loc[non_home_plate_outcome, 'des'] = pa_df.loc[non_home_plate_outcome, 'des_more'] # pa_df['des'] = pa_df['des'].apply(translate_pa_outcome) pa_df = ( pa_df .with_columns( pl.col('des').str.strip_chars().alias('_des'), pl.col('des').str.strip_chars(), pl.col('des_more').str.strip_chars() ) .with_columns( pl.col('des').fill_null(pl.col('des_more')) ) .with_columns( pl.when( (pl.col('des').str.split(' ').list.len() > 1) & (pl.col('des').str.contains(r'+\d+点')) ) .then(pl.col('des').str.split(' ').list.first()) .otherwise(pl.col('des')) .alias('des') ) .with_columns( pl.when( pl.col('des').is_in(['ボール', '見逃し', '空振り']) | pl.col('des').str.ends_with('塁けん制') ) .then( pl.col('des_more') ) .otherwise( pl.col('des') ) .alias('des') ) .with_columns( pl.col('des').map_elements(translate_pa_outcome, return_dtype=str) ) ) # translate pitch data # pitch_df = pitch_df[~pitch_df['pitch_name'].isna()] # pitch_df['jp_pitch_name'] = pitch_df['pitch_name'] # pitch_df['pitch_name'] = pitch_df['jp_pitch_name'].apply(lambda pitch_name: jp_pitch_to_en_pitch[pitch_name]) # pitch_df['pitch_type'] = pitch_df['jp_pitch_name'].apply(lambda pitch_name: jp_pitch_to_pitch_code[pitch_name]) # pitch_df['description'] = pitch_df['description'].apply(lambda item: item.split()[0] if len(item.split()) > 1 else item) # pitch_df['description'] = pitch_df['description'].apply(translate_pitch_outcome) # pitch_df['release_speed'] = pitch_df['release_speed'].replace('-', np.nan) # pitch_df.loc[~pitch_df['release_speed'].isna(), 'release_speed'] = pitch_df.loc[~pitch_df['release_speed'].isna(), 'release_speed'].str.removesuffix('km/h').astype(int) # pitch_df['plate_x'] = (pitch_df['plate_x'] + 13) - 80 # pitch_df['plate_z'] = 200 - (pitch_df['plate_z'] + 13) - 100 pitch_df = ( pitch_df .filter(pl.col('pitch_name').is_not_null()) .with_columns( pl.col('pitch_name').alias('jp_pitch_name') ) .with_columns( pl.col('jp_pitch_name').map_elements(lambda pitch_name: jp_pitch_to_en_pitch[pitch_name], return_dtype=str).alias('pitch_name'), pl.col('jp_pitch_name').map_elements(lambda pitch_name: jp_pitch_to_pitch_code[pitch_name], return_dtype=str).alias('pitch_type'), pl.col('description').str.split(' ').list.first().map_elements(translate_pitch_outcome, return_dtype=str), pl.when( pl.col('release_speed') != '-' ) .then( pl.col('release_speed').str.strip_suffix('km/h') ) .otherwise( None ) .alias('release_speed'), ((pl.col('plate_x') + 13) - 80).alias('plate_x'), (200 - (pl.col('plate_z') + 13) - 100).alias('plate_z'), ) .with_columns( pl.col('release_speed').cast(int), # idk why I can't do this during the strip_suffix step ) ) # translate player data # client = Client("Ramos-Ramos/npb_name_translator") # # en_names = client.predict( # # jp_names='\n'.join(player_df.name.tolist()), # # api_name="/predict" # # ) # # player_df['jp_name'] = player_df['name'] # # player_df['name'] = [name if name != 'nan' else np.nan for name in en_names.splitlines()] # en_names = client.predict( # jp_names='\n'.join(player_df['name'].to_list()), # api_name="/predict" # ) # player_df = ( # player_df # .with_columns( # pl.col('name').alias('jp_name'), # pl.Series('name', en_names.splitlines()) # ) # .with_columns( # pl.when(pl.col('name') == 'nan') # .then(None) # .otherwise(pl.col('name')) # .alias('name') # ) # ) player_df = pl.read_csv('player.csv') register = ( pl.read_csv('register.csv') .with_columns( pl.col('en_name').str.replace(',', '').alias('en_name'), ) .select( pl.col('en_name'), pl.col('jp_team').alias('team'), pl.col('jp_name').alias('name') ) ) player_df = player_df.join(register, on=['name', 'team'], how='inner').with_columns(pl.col('en_name').alias('name')).drop(pl.col('en_name')) # # merge pitch and pa data # df = pd.merge(pitch_df, pa_df, 'inner', on=['game_pk', 'pa_pk']) # df = pd.merge(df, player_df.rename(columns={'player_id': 'pitcher'}), 'inner', on='pitcher') # df['whiff'] = df['description'].isin(['SS', 'K']) # df['swing'] = ~df['description'].isin(['B', 'BB', 'LS', 'inv_K', 'bunt_K', 'HBP', 'SH', 'SH E', 'SH FC', 'obstruction', 'illegal_pitch', 'defensive_interference']) # df['csw'] = df['description'].isin(['SS', 'K', 'LS', 'inv_K']) # df['normal_pitch'] = ~df['description'].isin(['obstruction', 'illegal_pitch', 'defensive_interference']) # guess df = ( ( pitch_df .join(pa_df, on=['game_pk', 'pa_pk'], how='inner') .join(player_df.rename({'player_id': 'pitcher'}), on='pitcher', how='inner') ) .with_columns( pl.col('description').is_in(['SS', 'K']).alias('whiff'), ~pl.col('description').is_in(['B', 'BB', 'LS', 'inv_K', 'bunt_K', 'HBP', 'SH', 'SH E', 'SH FC', 'obstruction', 'illegal_pitch', 'defensive_interference']).alias('swing'), pl.col('description').is_in(['SS', 'K', 'LS', 'inv_K']).alias('csw'), ~pl.col('description').is_in(['obstruction', 'illegal_pitch', 'defensive_interference']).alias('normal_pitch') # guess ) ) # df_by_player_pitch = df.groupby(['name', 'pitch_name']) # whiff_rate = (df_by_player_pitch['whiff'].sum() / df_by_player_pitch['swing'].sum() * 100).round(1).rename('Whiff%') # csw_rate = (df_by_player_pitch['csw'].sum() / df_by_player_pitch['normal_pitch'].sum() * 100).round(1).rename('CSW%') # velo = df_by_player_pitch['release_speed'].apply(lambda x: round(x.mean(), 1)).rename('Velocity') # pitch_stats = pd.concat([whiff_rate, csw_rate, velo], axis=1) # league_pitch_stats = pd.DataFrame(df.groupby('pitch_name')['release_speed'].apply(lambda x: round(x.mean(), 1)).rename('Velocity')) pitch_stats, rhb_pitch_stats, lhb_pitch_stats = [ ( _df .group_by(['name', 'pitch_name']) .agg( ((pl.col('whiff').sum() / pl.col('swing').sum()) * 100).round(1).alias('Whiff%'), ((pl.col('csw').sum() / pl.col('normal_pitch').sum()) * 100).round(1).alias('CSW%'), pl.col('release_speed').mean().round(1).alias('Velocity'), pl.len().alias('Count') ) .sort(['name', 'Count'], descending=[False, True]) ) for _df in ( df, df.filter(pl.col('stand') == 'R'), df.filter(pl.col('stand') == 'L'), ) ] league_pitch_stats, rhb_league_pitch_stats, lhb_league_pitch_stats = [ _df.group_by('pitch_name').agg(pl.col('release_speed').mean().round(1).alias('Velocity')) for _df in ( df, df.filter(pl.col('stand') == 'R'), df.filter(pl.col('stand') == 'L'), ) ]