import gradio as gr from stability_sdk import client import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation from PIL import Image import io import os import warnings # theme = gr.themes.Monochrome( # primary_hue="indigo", # secondary_hue="blue", # neutral_hue="slate", # radius_size=gr.themes.sizes.radius_sm, # font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], # ) def infer(prompt, api_key): stability_api = client.StabilityInference( key=api_key, # API Key reference. verbose=True, # Print debug messages. engine="stable-diffusion-xl-beta-v2-2-2", # Set the engine to use for generation. # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 stable-inpainting-v1-0 stable-inpainting-512-v2-0 ) answers = stability_api.generate( prompt=prompt, seed=992446758, # If a seed is provided, the resulting generated image will be deterministic. # What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again. # Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook. steps=30, # Amount of inference steps performed on image generation. Defaults to 30. cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt. # Setting this value higher increases the strength in which it tries to match your prompt. # Defaults to 7.0 if not specified. width=512, # Generation width, defaults to 512 if not included. height=512, # Generation height, defaults to 512 if not included. samples=2, # Number of images to generate, defaults to 1 if not included. sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with. # Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers. # (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m) ) results = [] for resp in answers: for artifact in resp.artifacts: if artifact.finish_reason == generation.FILTER: warnings.warn( "Your request activated the API's safety filters and could not be processed." "Please modify the prompt and try again.") if artifact.type == generation.ARTIFACT_IMAGE: img = Image.open(io.BytesIO(artifact.binary)) results.append(img) return results css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem} #component-16{border-top-width: 1px!important;margin-top: 1em} .image_duplication{position: absolute; width: 100px; left: 50px} """ with gr.Blocks(css = css) as demo: gr.HTML( """

Stable Diffusion XL Demo

This is an unoffical demo for Stable Diffusion XL, which is the latest stable diffusion model released by Stability AI. The main features include Next-level photorealism capabilities, image composition and face generation, use of shorter prompts to create descriptive imagery, greater capability to produce legible text and rich visuals and jaw-dropping aesthetics. Please refer to the official website. for further information

""" ) api_key_input = gr.Textbox(type = "password", label = "Enter your StabilityAI API key here") with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): with gr.Column(): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", elem_id="prompt-text-input", ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) btn = gr.Button("Generate image").style( margin=False, rounded=(False, True, True, False), full_width=False, ) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") btn.click(infer, inputs=[text, api_key_input], outputs=[gallery]) examples = [ ["Vintage hot rod with custom flame paint job"], ["Ancient, mysterious temple in a mountain range, surrounded by misty clouds and tall peaks"], ["Glimpses of a herd of wild elephants crossing a savanna"], ["Beautiful waterfall in a lush jungle, with sunlight shining through the trees,"] ] ex = gr.Examples(examples=examples,inputs=[text], cache_examples=False) demo.launch()