# This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707
# The original license file is LICENSE.ControlNet in this repo.
from __future__ import annotations

import gc
import pathlib
import sys

import cv2
import numpy as np
import PIL.Image
import torch
from diffusers import (ControlNetModel, DiffusionPipeline,
                       StableDiffusionControlNetPipeline,
                       UniPCMultistepScheduler)

repo_dir = pathlib.Path(__file__).parent
submodule_dir = repo_dir / 'ControlNet'
sys.path.append(submodule_dir.as_posix())

from annotator.canny import apply_canny
from annotator.hed import apply_hed, nms
from annotator.midas import apply_midas
from annotator.mlsd import apply_mlsd
from annotator.openpose import apply_openpose
from annotator.uniformer import apply_uniformer
from annotator.util import HWC3, resize_image

CONTROLNET_MODEL_IDS = {

    'depth': 'lllyasviel/sd-controlnet-depth',

}


def download_all_controlnet_weights() -> None:
    for model_id in CONTROLNET_MODEL_IDS.values():
        ControlNetModel.from_pretrained(model_id)


class Model:
    def __init__(self,
                 base_model_id: str = 'runwayml/stable-diffusion-v1-5',
                 task_name: str = 'canny'):
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        self.base_model_id = ''
        self.task_name = ''
        self.pipe = self.load_pipe(base_model_id, task_name)

    def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
        if base_model_id == self.base_model_id and task_name == self.task_name and hasattr(
                self, 'pipe'):
            return self.pipe
        model_id = CONTROLNET_MODEL_IDS[task_name]
        controlnet = ControlNetModel.from_pretrained(model_id,
                                                     torch_dtype=torch.float16)
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_model_id,
            safety_checker=None,
            controlnet=controlnet,
            torch_dtype=torch.float16)
        pipe.scheduler = UniPCMultistepScheduler.from_config(
            pipe.scheduler.config)
        pipe.enable_xformers_memory_efficient_attention()
        pipe.to(self.device)
        torch.cuda.empty_cache()
        gc.collect()
        self.base_model_id = base_model_id
        self.task_name = task_name
        return pipe

    def set_base_model(self, base_model_id: str) -> str:
        if not base_model_id or base_model_id == self.base_model_id:
            return self.base_model_id
        del self.pipe
        torch.cuda.empty_cache()
        gc.collect()
        try:
            self.pipe = self.load_pipe(base_model_id, self.task_name)
        except Exception:
            self.pipe = self.load_pipe(self.base_model_id, self.task_name)
        return self.base_model_id

    def load_controlnet_weight(self, task_name: str) -> None:
        if task_name == self.task_name:
            return
        del self.pipe.controlnet
        torch.cuda.empty_cache()
        gc.collect()
        model_id = CONTROLNET_MODEL_IDS[task_name]
        controlnet = ControlNetModel.from_pretrained(model_id,
                                                     torch_dtype=torch.float16)
        controlnet.to(self.device)
        torch.cuda.empty_cache()
        gc.collect()
        self.pipe.controlnet = controlnet
        self.task_name = task_name

    def get_prompt(self, prompt: str, additional_prompt: str) -> str:
        if not prompt:
            prompt = additional_prompt
        else:
            prompt = f'{prompt}, {additional_prompt}'
        return prompt

    @torch.autocast('cuda')
    def run_pipe(
        self,
        prompt: str,
        negative_prompt: str,
        control_image: PIL.Image.Image,
        num_images: int,
        num_steps: int,
        guidance_scale: float,
        seed: int,
    ) -> list[PIL.Image.Image]:
        if seed == -1:
            seed = np.random.randint(0, np.iinfo(np.int64).max)
        generator = torch.Generator().manual_seed(seed)
        return self.pipe(prompt=prompt,
                         negative_prompt=negative_prompt,
                         guidance_scale=guidance_scale,
                         num_images_per_prompt=num_images,
                         num_inference_steps=num_steps,
                         generator=generator,
                         image=control_image).images

    @staticmethod
    def preprocess_depth(
        input_image: np.ndarray,
        image_resolution: int,
        detect_resolution: int,
        is_depth_image: bool,
    ) -> tuple[PIL.Image.Image, PIL.Image.Image]:
        input_image = HWC3(input_image)
        if not is_depth_image:
            control_image, _ = apply_midas(
                resize_image(input_image, detect_resolution))
            control_image = HWC3(control_image)
            image = resize_image(input_image, image_resolution)
            H, W = image.shape[:2]
            control_image = cv2.resize(control_image, (W, H),
                                       interpolation=cv2.INTER_LINEAR)
        else:
            control_image = resize_image(input_image, image_resolution)
        return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
            control_image)

    @torch.inference_mode()
    def process_depth(
        self,
        input_image: np.ndarray,
        prompt: str,
        additional_prompt: str,
        negative_prompt: str,
        num_images: int,
        image_resolution: int,
        detect_resolution: int,
        num_steps: int,
        guidance_scale: float,
        seed: int,
        is_depth_image: bool,
    ) -> list[PIL.Image.Image]:
        control_image, vis_control_image = self.preprocess_depth(
            input_image=input_image,
            image_resolution=image_resolution,
            detect_resolution=detect_resolution,
            is_depth_image=is_depth_image,
        )
        self.load_controlnet_weight('depth')
        results = self.run_pipe(
            prompt=self.get_prompt(prompt, additional_prompt),
            negative_prompt=negative_prompt,
            control_image=control_image,
            num_images=num_images,
            num_steps=num_steps,
            guidance_scale=guidance_scale,
            seed=seed,
        )
        return [vis_control_image] + results