# This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707 # The original license file is LICENSE.ControlNet in this repo. from __future__ import annotations import gc import pathlib import sys import cv2 import numpy as np import PIL.Image import torch from diffusers import (ControlNetModel, DiffusionPipeline, StableDiffusionControlNetPipeline, UniPCMultistepScheduler) repo_dir = pathlib.Path(__file__).parent submodule_dir = repo_dir / 'ControlNet' sys.path.append(submodule_dir.as_posix()) from annotator.midas import apply_midas from annotator.uniformer import apply_uniformer from annotator.util import HWC3, resize_image CONTROLNET_MODEL_IDS = { 'depth': 'lllyasviel/sd-controlnet-depth', } def download_all_controlnet_weights() -> None: for model_id in CONTROLNET_MODEL_IDS.values(): ControlNetModel.from_pretrained(model_id) class Model: def __init__(self, base_model_id: str = 'runwayml/stable-diffusion-v1-5', task_name: str = 'depth'): self.device = torch.device( 'cuda:0' if torch.cuda.is_available() else 'cpu') self.base_model_id = '' self.task_name = '' self.pipe = self.load_pipe(base_model_id, task_name) def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline: if base_model_id == self.base_model_id and task_name == self.task_name and hasattr( self, 'pipe'): return self.pipe model_id = CONTROLNET_MODEL_IDS[task_name] controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( base_model_id, safety_checker=None, controlnet=controlnet, torch_dtype=torch.float16) pipe.scheduler = UniPCMultistepScheduler.from_config( pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() pipe.to(self.device) torch.cuda.empty_cache() gc.collect() self.base_model_id = base_model_id self.task_name = task_name return pipe def set_base_model(self, base_model_id: str) -> str: if not base_model_id or base_model_id == self.base_model_id: return self.base_model_id del self.pipe torch.cuda.empty_cache() gc.collect() try: self.pipe = self.load_pipe(base_model_id, self.task_name) except Exception: self.pipe = self.load_pipe(self.base_model_id, self.task_name) return self.base_model_id def load_controlnet_weight(self, task_name: str) -> None: if task_name == self.task_name: return del self.pipe.controlnet torch.cuda.empty_cache() gc.collect() model_id = CONTROLNET_MODEL_IDS[task_name] controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16) controlnet.to(self.device) torch.cuda.empty_cache() gc.collect() self.pipe.controlnet = controlnet self.task_name = task_name def get_prompt(self, prompt: str, additional_prompt: str) -> str: if not prompt: prompt = additional_prompt else: prompt = f'{prompt}, {additional_prompt}' return prompt @torch.autocast('cuda') def run_pipe( self, prompt: str, negative_prompt: str, control_image: PIL.Image.Image, num_images: int, num_steps: int, guidance_scale: float, seed: int, ) -> list[PIL.Image.Image]: if seed == -1: seed = np.random.randint(0, np.iinfo(np.int64).max) generator = torch.Generator().manual_seed(seed) return self.pipe(prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_images_per_prompt=num_images, num_inference_steps=num_steps, generator=generator, image=control_image).images @staticmethod def preprocess_depth( input_image: np.ndarray, image_resolution: int, detect_resolution: int, is_depth_image: bool, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: input_image = HWC3(input_image) if not is_depth_image: control_image, _ = apply_midas( resize_image(input_image, detect_resolution)) control_image = HWC3(control_image) image = resize_image(input_image, image_resolution) H, W = image.shape[:2] control_image = cv2.resize(control_image, (W, H), interpolation=cv2.INTER_LINEAR) else: control_image = resize_image(input_image, image_resolution) return PIL.Image.fromarray(control_image), PIL.Image.fromarray( control_image) @torch.inference_mode() def process_depth( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_images: int, image_resolution: int, detect_resolution: int, num_steps: int, guidance_scale: float, seed: int, is_depth_image: bool, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_depth( input_image=input_image, image_resolution=image_resolution, detect_resolution=detect_resolution, is_depth_image=is_depth_image, ) self.load_controlnet_weight('depth') results = self.run_pipe( prompt=self.get_prompt(prompt, additional_prompt), negative_prompt=negative_prompt, control_image=control_image, num_images=num_images, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) return [vis_control_image] + results