import streamlit as st from transformers import pipeline import csv import re import torch import warnings warnings.filterwarnings("ignore") # Define a prompt template for Magicoder with placeholders for instruction and response. MAGICODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions. @@ Instruction {instruction} @@ Response """ @st.cache(allow_output_mutation=True) def load_model(): return pipeline( model="ise-uiuc/Magicoder-S-DS-6.7B", task="text-generation" ) # Function to generate response def generate_response(instruction): prompt = MAGICODER_PROMPT.format(instruction=instruction) result = model(prompt, max_length=2048, num_return_sequences=1, temperature=0.0) response = result[0]["generated_text"] response_start_index = response.find("@@ Response") + len("@@ Response") response = response[response_start_index:].strip() return response # Function to append data to a CSV file def save_to_csv(data, filename): with open(filename, 'a', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(data) # Streamlit app def main(): global model st.title("Magicoder Assistant") if 'model' not in globals(): model = load_model() instruction = st.text_area("Enter your instruction here:") if st.button("Generate Response"): generated_response = generate_response(instruction) st.text("Generated response:") st.text(generated_response) correct_output = st.radio("Is the generated output correct?", ("Yes", "No")) if correct_output.lower() == 'yes': feedback = st.text_input("Do you want to provide any feedback?") save_to_csv(["Correct", feedback], 'output_ratings.csv') else: correct_code = st.text_area("Please enter the correct code:") feedback = st.text_input("Any other feedback you want to provide:") save_to_csv(["Incorrect", feedback, correct_code], 'output_ratings.csv') if __name__ == "__main__": main()