import gradio as gr
from operator import itemgetter
import os
# import pandas as pd
from langchain_community.vectorstores import FAISS
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
## not needed since we are loading previously saved vector store from file and not reading pdf on the run
# from langchain_community.document_loaders import PyPDFLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
## models tried
## TinyLlama/TinyLlama-1.1B-Chat-v1.0
## meta-llama/Meta-Llama-3-8B
## google/gemma-1.1-7b-it
HF_TOKEN = os.environ.get("HF_TOKEN", None)
model_id = "google/gemma-1.1-2b-it"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
embeddings = HuggingFaceEmbeddings()
pipe = pipeline("text-generation", model = model, tokenizer = tokenizer, max_new_tokens = 200)
hf = HuggingFacePipeline(pipeline=pipe)
## commenting this code because now we are loading vectors directly and not parsing the pdf
# pdfLoader = PyPDFLoader("./LangchainPaper/RAGInputPaper.pdf")
# documents = pdfLoader.load()
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 512, chunk_overlap = 30)
# docs = text_splitter.split_documents(documents)
## creating vector embeddings during run using FAISS
# vectorstore = FAISS.from_documents(
# docs, embedding=embeddings
# )
# retriever = vectorstore.as_retriever()
## loading previously saved vector embeddings from local space
vectorstore = FAISS.load_local("./fi_LangchainPaper", embeddings, allow_dangerous_deserialization = True)
retriever = vectorstore.as_retriever()
qa = RetrievalQA.from_chain_type(
llm = hf, chain_type = "stuff", retriever = retriever, return_source_documents = False)
# queries=pd.read_csv('./interactions/queries.csv')
def greet(Question):
answer = qa({"query": Question})
pa = [a.split("Helpful Answer: ") for a in answer.get('result').split('\n') if "Helpful Answer" in a]
# new=pd.DataFrame.from_dict({'query':Question,'response':pa[0][-1]},orient='index')
# queries.append(new)
# queries.to_csv('./interactions/queries.csv')
return pa[0][-1]
if __name__ == "__main__":
title = "RAG with LLMs"
description = """
Demo using Vector store-backed retriever. This space demonstrate application of RAG on a small model and its effectiveness, I used small model because of the space constraint. The current space runs on mere 2GB of RAM, hence there is some delay in generating output. Test this to your hearts content and let me know your thoughts, I will keep updating this space with tiny improvements on architecture and design