import gradio as gr from transformers import AutoTokenizer import os import spaces import torch from llama_index.llms.huggingface import HuggingFaceLLM # Optional quantization to 4bit from transformers import BitsAndBytesConfig from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import faiss from llama_index.core import ( load_index_from_storage, StorageContext, ) from llama_index.vector_stores.faiss import FaissVectorStore from llama_index.core.tools import QueryEngineTool, ToolMetadata import json from typing import Sequence, List from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool from llama_index.core.agent import ReActAgent import nest_asyncio from llama_index.core.tools import QueryEngineTool, ToolMetadata HF_TOKEN = os.environ.get("HF_TOKEN", None) DESCRIPTION = '''

Mistral 7B Instruct v0.3

This Space demonstrates the Agent based RAG on multiple documents using Gemma 2b it and llama index

''' tokenizer = AutoTokenizer.from_pretrained( "google/gemma-1.1-2b-it", token=HF_TOKEN, ) stopping_ids = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] quantization_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type = "nf4", bnb_4bit_use_double_quant = True, ) llm = HuggingFaceLLM( model_name = "google/gemma-1.1-2b-it", model_kwargs = { "token": HF_TOKEN, "torch_dtype": torch.bfloat16, # comment this line and uncomment below to use 4bit #"quantization_config": quantization_config }, generate_kwargs = { "do_sample": True, "temperature": 0.6, "top_p": 0.9, }, tokenizer_name = "google/gemma-1.1-2b-it", tokenizer_kwargs = {"token": HF_TOKEN}, stopping_ids = stopping_ids, ) embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5") # dimensions of bge-large-en-v1.5 obtained from https://huggingface.co/BAAI/bge-large-en-v1.5 d = 1024 faiss_index = faiss.IndexFlatL2(d) nest_asyncio.apply() # bge embedding model Settings.embed_model = embed_model # GPU - Llama-3-8B-Instruct model # CPU - Gemma 1.1 2B it instruct Settings.llm = llm # rebuild storage context geoVectorStore = FaissVectorStore.from_persist_dir("./geoindex/") geoStorageContext = StorageContext.from_defaults( vector_store=geoVectorStore, persist_dir="./geoindex/") geoindex = load_index_from_storage(storage_context=geoStorageContext) bioVectorStore = FaissVectorStore.from_persist_dir("./bioindex/") bioStorageContext = StorageContext.from_defaults( vector_store=bioVectorStore, persist_dir="./bioindex/") bioindex = load_index_from_storage(storage_context=geoStorageContext) geo_engine = geoindex.as_query_engine(similarity_top_k=3) bio_engine = bioindex.as_query_engine(similarity_top_k=3) query_engine_tools = [ QueryEngineTool( query_engine=geo_engine, metadata=ToolMetadata( name="geography", description=( "This is a geography textbook, it provides information about geography. " "Use a detailed plain text question as input to the tool." ), ), ), QueryEngineTool( query_engine=bio_engine, metadata=ToolMetadata( name="biology", description=( "This is a biology textbook it provides information about biology. " "Use a detailed plain text question as input to the tool." ), ), ), ] agent = ReActAgent.from_tools( query_engine_tools, llm=llm, verbose=False, ) @spaces.GPU(duration=120) def respond( message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, ): prompt=f'''Analyze the question: {message} and use appropriate tool to get the relevant context and answer the question, do not answer on your own and output only Observation''' response = agent.chat(prompt) return print(str(response)) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], examples=[ ["What are different types of rural settlement?"], ["Explain Urbanisation in India?"], ["What was the level of urbanisation in India in 2011?"], ["List the religious and cultural towns in India?"], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()