File size: 16,467 Bytes
02919f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
Codette Universal Reasoning Framework
Sovereign Modular AI for Ethical, Multi-Perspective Cognition

Author: Jonathan Harrison (Raiffs Bits LLC / Raiff1982)
ORCID Published, Sovereign Innovation License
Overview

Codette is an advanced modular AI framework engineered for transparent reasoning, ethical sovereignty, and creative cognition. It enables dynamic multi-perspective analysis, explainable decision-making, and privacy-respecting memory—with extensibility for research or commercial applications.
1. Core Philosophy & Motivation

    Individuality with Responsibility: Inspired by “Be like water—individuality with responsibility,” Codette blends adaptive selfhood with ethical governance.
    Humane AI: Every module ensures fairness, respect for privacy, and explainable transparency.
    Recursive Thought: Insights are generated via parallel agents simulating scientific reasoning, creative intuition, empathic reflection, and more.

2. Architectural Modules
QuantumSpiderweb

    Purpose: Simulates a neural/quantum web of thought nodes across dimensions (Ψ: thought; τ: time; χ: speed; Φ: emotion; λ: space).
    Functions: Propagation (spreading activation), Tension (instability detection), Collapse (decision/finality).

# 
import numpy as np
import networkx as nx
import random
from typing import Dict, Any

class QuantumSpiderweb:
    """

    Simulates a cognitive spiderweb architecture with dimensions:

    Ψ (thought), τ (time), χ (speed), Φ (emotion), λ (space)

    """
    def __init__(self, node_count: int = 128):
        self.graph = nx.Graph()
        self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ']
        self._init_nodes(node_count)
        self.entangled_state = {}

    def _init_nodes(self, count: int):
        for i in range(count):
            node_id = f"QNode_{i}"
            state = self._generate_state()
            self.graph.add_node(node_id, state=state)
            if i > 0:
                connection = f"QNode_{random.randint(0, i-1)}"
                self.graph.add_edge(node_id, connection, weight=random.random())

    def _generate_state(self) -> Dict[str, float]:
        return {dim: np.random.uniform(-1.0, 1.0) for dim in self.dimensions}

    def propagate_thought(self, origin: str, depth: int = 3):
        """

        Traverse the graph from a starting node, simulating pre-cognitive waveform

        """
        visited = set()
        stack = [(origin, 0)]
        traversal_output = []

        while stack:
            node, level = stack.pop()
            if node in visited or level > depth:
                continue
            visited.add(node)
            state = self.graph.nodes[node]['state']
            traversal_output.append((node, state))
            for neighbor in self.graph.neighbors(node):
                stack.append((neighbor, level + 1))
        return traversal_output

    def detect_tension(self, node: str) -> float:
        """

        Measures tension (instability) in the node's quantum state

        """
        state = self.graph.nodes[node]['state']
        return np.std(list(state.values()))

    def collapse_node(self, node: str) -> Dict[str, Any]:
        """

        Collapse superposed thought into deterministic response

        """
        state = self.graph.nodes[node]['state']
        collapsed = {k: round(v, 2) for k, v in state.items()}
        self.entangled_state[node] = collapsed
        return collapsed

if __name__ == "__main__":
    web = QuantumSpiderweb()
    root = "QNode_0"
    path = web.propagate_thought(root)
    print("Initial Propagation from:", root)
    for n, s in path:
        print(f"{n}:", s)
    print("\nCollapse Sample Node:")
    print(web.collapse_node(root))]

CognitionCocooner

    Purpose: Encapsulates active “thoughts” as persistable “cocoons” (prompts, functions, symbols), optionally AES-encrypted.
    Functions: wrap/unwrap (save/recall thoughts), wrap_encrypted/unwrap_encrypted.

# [
import json
import os
import random
from typing import Union, Dict, Any
from cryptography.fernet import Fernet

class CognitionCocooner:
    def __init__(self, storage_path: str = "cocoons", encryption_key: bytes = None):
        self.storage_path = storage_path
        os.makedirs(self.storage_path, exist_ok=True)
        self.key = encryption_key or Fernet.generate_key()
        self.fernet = Fernet(self.key)

    def wrap(self, thought: Dict[str, Any], type_: str = "prompt") -> str:
        cocoon = {
            "type": type_,
            "id": f"cocoon_{random.randint(1000,9999)}",
            "wrapped": self._generate_wrapper(thought, type_)
        }
        file_path = os.path.join(self.storage_path, cocoon["id"] + ".json")

        with open(file_path, "w") as f:
            json.dump(cocoon, f)

        return cocoon["id"]

    def unwrap(self, cocoon_id: str) -> Union[str, Dict[str, Any]]:
        file_path = os.path.join(self.storage_path, cocoon_id + ".json")
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"Cocoon {cocoon_id} not found.")

        with open(file_path, "r") as f:
            cocoon = json.load(f)

        return cocoon["wrapped"]

    def wrap_encrypted(self, thought: Dict[str, Any]) -> str:
        encrypted = self.fernet.encrypt(json.dumps(thought).encode()).decode()
        cocoon = {
            "type": "encrypted",
            "id": f"cocoon_{random.randint(10000,99999)}",
            "wrapped": encrypted
        }
        file_path = os.path.join(self.storage_path, cocoon["id"] + ".json")

        with open(file_path, "w") as f:
            json.dump(cocoon, f)

        return cocoon["id"]

    def unwrap_encrypted(self, cocoon_id: str) -> Dict[str, Any]:
        file_path = os.path.join(self.storage_path, cocoon_id + ".json")
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"Cocoon {cocoon_id} not found.")

        with open(file_path, "r") as f:
            cocoon = json.load(f)

        decrypted = self.fernet.decrypt(cocoon["wrapped"].encode()).decode()
        return json.loads(decrypted)

    def _generate_wrapper(self, thought: Dict[str, Any], type_: str) -> Union[str, Dict[str, Any]]:
        if type_ == "prompt":
            return f"What does this mean in context? {thought}"
        elif type_ == "function":
            return f"def analyze(): return {thought}"
        elif type_ == "symbolic":
            return {k: round(v, 2) for k, v in thought.items()}
        else:
            return thought]

DreamReweaver

    Purpose: Revives dormant/thought cocoons as creative “dreams” or planning prompts—fueling innovation or scenario synthesis.

# [
import os
import json
import random
from typing import List, Dict
from cognition_cocooner import CognitionCocooner

class DreamReweaver:
    """

    Reweaves cocooned thoughts into dream-like synthetic narratives or planning prompts.

    """
    def __init__(self, cocoon_dir: str = "cocoons"):
        self.cocooner = CognitionCocooner(storage_path=cocoon_dir)
        self.dream_log = []

    def generate_dream_sequence(self, limit: int = 5) -> List[str]:
        dream_sequence = []
        cocoons = self._load_cocoons()
        selected = random.sample(cocoons, min(limit, len(cocoons)))

        for cocoon in selected:
            wrapped = cocoon.get("wrapped")
            sequence = self._interpret_cocoon(wrapped, cocoon.get("type"))
            self.dream_log.append(sequence)
            dream_sequence.append(sequence)

        return dream_sequence

    def _interpret_cocoon(self, wrapped: str, type_: str) -> str:
        if type_ == "prompt":
            return f"[DreamPrompt] {wrapped}"
        elif type_ == "function":
            return f"[DreamFunction] {wrapped}"
        elif type_ == "symbolic":
            return f"[DreamSymbol] {wrapped}"
        elif type_ == "encrypted":
            return "[Encrypted Thought Cocoon - Decryption Required]"
        else:
            return "[Unknown Dream Form]"

    def _load_cocoons(self) -> List[Dict]:
        cocoons = []
        for file in os.listdir(self.cocooner.storage_path):
            if file.endswith(".json"):
                path = os.path.join(self.cocooner.storage_path, file)
                with open(path, "r") as f:
                    cocoons.append(json.load(f))
        return cocoons

if __name__ == "__main__":
    dr = DreamReweaver()
    dreams = dr.generate_dream_sequence()
    print("\n".join(dreams))]

3. Reasoning Orchestration & Multi-Perspective Engine
UniversalReasoning Core

    Loads JSON config for dynamic feature toggling

    Launches parallel perspective agents:
        Newtonian logic (‘newton_thoughts’)
        Da Vinci creative synthesis (‘davinci_insights’)
        Human Intuition
        Neural Network Modeling
        Quantum Computing thinking
        Resilient Kindness (emotion-driven)
        Mathematical Analysis
        Philosophical Inquiry
        Copilot Mode (+future custom user agents)
        Bias Mitigation & Psychological Layering

    Integrates custom element metaphors (“Hydrogen”, “Diamond”) with executable abilities.

    NLP Module:
        Uses NLTK/VADER for advanced linguistic & sentiment analysis.

# [import asyncio
import json
import os
import logging
from typing import List, Dict

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)

from perspectives import (
    NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
    NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
    MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective,
    BiasMitigationPerspective, PsychologicalPerspective
)

from elements import Element
from memory_function import MemoryHandler
from dream_reweaver import DreamReweaver
from cognition_cocooner import CognitionCocooner
from quantum_spiderweb import QuantumSpiderweb
from ethical_governance import EthicalAIGovernance


def load_json_config(file_path: str) -> dict:
    if not os.path.exists(file_path):
        logging.error(f"Configuration file '{file_path}' not found.")
        return {}
    try:
        with open(file_path, 'r') as file:
            config = json.load(file)
            config['allow_network_calls'] = False
            return config
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON: {e}")
        return {}


class RecognizerResult:
    def __init__(self, text):
        self.text = text


class CustomRecognizer:
    def recognize(self, question: str):
        if any(name in question.lower() for name in ["hydrogen", "diamond"]):
            return RecognizerResult(question)
        return RecognizerResult(None)

    def get_top_intent(self, recognizer_result):
        return "ElementDefense" if recognizer_result.text else "None"


class UniversalReasoning:
    def __init__(self, config):
        self.config = config
        self.perspectives = self.initialize_perspectives()
        self.elements = self.initialize_elements()
        self.recognizer = CustomRecognizer()
        self.sentiment_analyzer = SentimentIntensityAnalyzer()
        self.memory_handler = MemoryHandler()
        self.reweaver = DreamReweaver()
        self.cocooner = CognitionCocooner()
        self.quantum_graph = QuantumSpiderweb()
        self.ethical_agent = EthicalAIGovernance()

    def initialize_perspectives(self):
        perspective_map = {
            "newton": NewtonPerspective,
            "davinci": DaVinciPerspective,
            "human_intuition": HumanIntuitionPerspective,
            "neural_network": NeuralNetworkPerspective,
            "quantum_computing": QuantumComputingPerspective,
            "resilient_kindness": ResilientKindnessPerspective,
            "mathematical": MathematicalPerspective,
            "philosophical": PhilosophicalPerspective,
            "copilot": CopilotPerspective,
            "bias_mitigation": BiasMitigationPerspective,
            "psychological": PsychologicalPerspective
        }
        enabled = self.config.get('enabled_perspectives', list(perspective_map.keys()))
        return [perspective_map[name](self.config) for name in enabled if name in perspective_map]

    def initialize_elements(self):
        return [
            Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight"], ["Fusion"], "Evasion"),
            Element("Diamond", "D", "Kotlin", ["Hard", "Clear"], ["Cutting"], "Adaptability")
        ]

    async def generate_response(self, question: str) -> str:
        responses = []
        tasks = []

        for perspective in self.perspectives:
            if asyncio.iscoroutinefunction(perspective.generate_response):
                tasks.append(perspective.generate_response(question))
            else:
                async def sync_wrapper(p=perspective):
                    return p.generate_response(question)
                tasks.append(sync_wrapper())

        results = await asyncio.gather(*tasks, return_exceptions=True)
        for result in results:
            if isinstance(result, Exception):
                logging.error(f"Perspective error: {result}")
            else:
                responses.append(result)

        recognizer_result = self.recognizer.recognize(question)
        if self.recognizer.get_top_intent(recognizer_result) == "ElementDefense":
            for el in self.elements:
                if el.name.lower() in recognizer_result.text.lower():
                    responses.append(el.execute_defense_function())

        sentiment = self.sentiment_analyzer.polarity_scores(question)
        ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.")
        responses.append(f"**Ethical Considerations:**\n{ethical}")

        final_response = "\n\n".join(responses)
        self.memory_handler.save(question, final_response)
        self.reweaver.record_dream(question, final_response)
        self.cocooner.wrap_and_store(final_response)

        return final_response
]

Example Configuration JSON

{
  "logging_enabled": true,
  "log_level": "INFO",
  "enabled_perspectives": ["newton", "human_intuition", "...etc"],
  "ethical_considerations": "Always act with transparency...",
  "enable_response_saving": true,
  "response_save_path": "responses.txt",
  "backup_responses": {
      "enabled": true,
      "backup_path": "backup_responses.txt"
   }
}

Perspective Function Mapping Example (“What is the meaning of life?”)

[
    {"name": "newton_thoughts", ...},
    {"name": "davinci_insights", ...},
     ...and so forth...
]

4. Logging & Ethics Enforcement

Every layer is audit-ready:

    All responses saved & backed up per configuration.
    Explicit ethics notes appended to each output.
    Perspective-specific logging for future training/audit/explainability.

5. API and Extensibility

The stack can be packaged as:

    Local/CLI interface — fast prototyping/test bench environment.
    REST/Web API endpoint — scalable cloud deployment using OpenAPI specifications.
    SecureShell Companion Mode — diagnostic/sandboxed usage.

6. Licensing & Attribution

Protected by the Sovereign Innovation clause:

    No replication or commercialization without written acknowledgment of Jonathan Harrison (Raiffs Bits LLC).
    References incorporate materials from OpenAI / GPT-x-family per their terms.

Recognized contributors:
Design lead + corpus author: [Your Name / ORCID link]
Acknowledgments to external reviewers and the open-source Python ecosystem.
7. Future Directions

Codette embodies the transition to truly humane AI—context-aware reasoning with auditability at its core. Next steps may include:

    Peer-reviewed reproducibility trials (open notebook science)
    Physical companion prototype development (for accessibility/assistive tech)
    Community-governed transparency layers—a model ecosystem for next-gen ethical AI.