{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# Importing The data and preprocessing" ], "metadata": { "id": "o01mOtABchVv" } }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "7vSnAq8auv2a" }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n" ] }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OS_yd77xmvau", "outputId": "5829d46d-c92c-48be-e610-56c311bb9b84" }, "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "data=pd.read_excel('/content/drive/MyDrive/Dataset/Dataset.xlsx')\n", "data.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 617 }, "id": "5oWpS54uh6rS", "outputId": "c3b9eff7-2587-43f7-afdf-ca2cf1d9dc5e" }, "execution_count": 3, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Airline Date_of_Journey Source Destination Route \\\n", "0 IndiGo 24/03/2019 Banglore New Delhi BLR → DEL \n", "1 Air India 1/05/2019 Kolkata Banglore CCU → IXR → BBI → BLR \n", "2 Jet Airways 9/06/2019 Delhi Cochin DEL → LKO → BOM → COK \n", "3 IndiGo 12/05/2019 Kolkata Banglore CCU → NAG → BLR \n", "4 IndiGo 01/03/2019 Banglore New Delhi BLR → NAG → DEL \n", "\n", " Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price \n", "0 22:20 01:10 22 Mar 2h 50m non-stop No info 3897 \n", "1 05:50 13:15 7h 25m 2 stops No info 7662 \n", "2 09:25 04:25 10 Jun 19h 2 stops No info 13882 \n", "3 18:05 23:30 5h 25m 1 stop No info 6218 \n", "4 16:50 21:35 4h 45m 1 stop No info 13302 " ], "text/html": [ "\n", "\n", "
\n", " | Airline | \n", "Date_of_Journey | \n", "Source | \n", "Destination | \n", "Route | \n", "Dep_Time | \n", "Arrival_Time | \n", "Duration | \n", "Total_Stops | \n", "Additional_Info | \n", "Price | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "IndiGo | \n", "24/03/2019 | \n", "Banglore | \n", "New Delhi | \n", "BLR → DEL | \n", "22:20 | \n", "01:10 22 Mar | \n", "2h 50m | \n", "non-stop | \n", "No info | \n", "3897 | \n", "
1 | \n", "Air India | \n", "1/05/2019 | \n", "Kolkata | \n", "Banglore | \n", "CCU → IXR → BBI → BLR | \n", "05:50 | \n", "13:15 | \n", "7h 25m | \n", "2 stops | \n", "No info | \n", "7662 | \n", "
2 | \n", "Jet Airways | \n", "9/06/2019 | \n", "Delhi | \n", "Cochin | \n", "DEL → LKO → BOM → COK | \n", "09:25 | \n", "04:25 10 Jun | \n", "19h | \n", "2 stops | \n", "No info | \n", "13882 | \n", "
3 | \n", "IndiGo | \n", "12/05/2019 | \n", "Kolkata | \n", "Banglore | \n", "CCU → NAG → BLR | \n", "18:05 | \n", "23:30 | \n", "5h 25m | \n", "1 stop | \n", "No info | \n", "6218 | \n", "
4 | \n", "IndiGo | \n", "01/03/2019 | \n", "Banglore | \n", "New Delhi | \n", "BLR → NAG → DEL | \n", "16:50 | \n", "21:35 | \n", "4h 45m | \n", "1 stop | \n", "No info | \n", "13302 | \n", "
\n", " | Airline | \n", "Date_of_Journey | \n", "Source | \n", "Destination | \n", "Route | \n", "Dep_Time | \n", "Arrival_Time | \n", "Duration | \n", "Total_Stops | \n", "Additional_Info | \n", "Price | \n", "Journey_day | \n", "Journey_month | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "IndiGo | \n", "24/03/2019 | \n", "Banglore | \n", "New Delhi | \n", "BLR → DEL | \n", "22:20 | \n", "01:10 22 Mar | \n", "2h 50m | \n", "non-stop | \n", "No info | \n", "3897 | \n", "24 | \n", "3 | \n", "
1 | \n", "Air India | \n", "1/05/2019 | \n", "Kolkata | \n", "Banglore | \n", "CCU → IXR → BBI → BLR | \n", "05:50 | \n", "13:15 | \n", "7h 25m | \n", "2 stops | \n", "No info | \n", "7662 | \n", "1 | \n", "5 | \n", "
2 | \n", "Jet Airways | \n", "9/06/2019 | \n", "Delhi | \n", "Cochin | \n", "DEL → LKO → BOM → COK | \n", "09:25 | \n", "04:25 10 Jun | \n", "19h | \n", "2 stops | \n", "No info | \n", "13882 | \n", "9 | \n", "6 | \n", "
3 | \n", "IndiGo | \n", "12/05/2019 | \n", "Kolkata | \n", "Banglore | \n", "CCU → NAG → BLR | \n", "18:05 | \n", "23:30 | \n", "5h 25m | \n", "1 stop | \n", "No info | \n", "6218 | \n", "12 | \n", "5 | \n", "
4 | \n", "IndiGo | \n", "01/03/2019 | \n", "Banglore | \n", "New Delhi | \n", "BLR → NAG → DEL | \n", "16:50 | \n", "21:35 | \n", "4h 45m | \n", "1 stop | \n", "No info | \n", "13302 | \n", "1 | \n", "3 | \n", "
\n", " | Airline | \n", "Source | \n", "Destination | \n", "Route | \n", "Arrival_Time | \n", "Duration | \n", "Total_Stops | \n", "Additional_Info | \n", "Price | \n", "Journey_day | \n", "Journey_month | \n", "Dep_hour | \n", "Dep_min | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "IndiGo | \n", "Banglore | \n", "New Delhi | \n", "BLR → DEL | \n", "01:10 22 Mar | \n", "2h 50m | \n", "non-stop | \n", "No info | \n", "3897 | \n", "24 | \n", "3 | \n", "22 | \n", "20 | \n", "
1 | \n", "Air India | \n", "Kolkata | \n", "Banglore | \n", "CCU → IXR → BBI → BLR | \n", "13:15 | \n", "7h 25m | \n", "2 stops | \n", "No info | \n", "7662 | \n", "1 | \n", "5 | \n", "5 | \n", "50 | \n", "
2 | \n", "Jet Airways | \n", "Delhi | \n", "Cochin | \n", "DEL → LKO → BOM → COK | \n", "04:25 10 Jun | \n", "19h | \n", "2 stops | \n", "No info | \n", "13882 | \n", "9 | \n", "6 | \n", "9 | \n", "25 | \n", "
3 | \n", "IndiGo | \n", "Kolkata | \n", "Banglore | \n", "CCU → NAG → BLR | \n", "23:30 | \n", "5h 25m | \n", "1 stop | \n", "No info | \n", "6218 | \n", "12 | \n", "5 | \n", "18 | \n", "5 | \n", "
4 | \n", "IndiGo | \n", "Banglore | \n", "New Delhi | \n", "BLR → NAG → DEL | \n", "21:35 | \n", "4h 45m | \n", "1 stop | \n", "No info | \n", "13302 | \n", "1 | \n", "3 | \n", "16 | \n", "50 | \n", "
\n", " | Airline | \n", "Source | \n", "Destination | \n", "Route | \n", "Duration | \n", "Total_Stops | \n", "Additional_Info | \n", "Price | \n", "Journey_day | \n", "Journey_month | \n", "Dep_hour | \n", "Dep_min | \n", "Arrival_hour | \n", "Arrival_min | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "IndiGo | \n", "Banglore | \n", "New Delhi | \n", "BLR → DEL | \n", "2h 50m | \n", "non-stop | \n", "No info | \n", "3897 | \n", "24 | \n", "3 | \n", "22 | \n", "20 | \n", "1 | \n", "10 | \n", "
1 | \n", "Air India | \n", "Kolkata | \n", "Banglore | \n", "CCU → IXR → BBI → BLR | \n", "7h 25m | \n", "2 stops | \n", "No info | \n", "7662 | \n", "1 | \n", "5 | \n", "5 | \n", "50 | \n", "13 | \n", "15 | \n", "
2 | \n", "Jet Airways | \n", "Delhi | \n", "Cochin | \n", "DEL → LKO → BOM → COK | \n", "19h | \n", "2 stops | \n", "No info | \n", "13882 | \n", "9 | \n", "6 | \n", "9 | \n", "25 | \n", "4 | \n", "25 | \n", "
3 | \n", "IndiGo | \n", "Kolkata | \n", "Banglore | \n", "CCU → NAG → BLR | \n", "5h 25m | \n", "1 stop | \n", "No info | \n", "6218 | \n", "12 | \n", "5 | \n", "18 | \n", "5 | \n", "23 | \n", "30 | \n", "
4 | \n", "IndiGo | \n", "Banglore | \n", "New Delhi | \n", "BLR → NAG → DEL | \n", "4h 45m | \n", "1 stop | \n", "No info | \n", "13302 | \n", "1 | \n", "3 | \n", "16 | \n", "50 | \n", "21 | \n", "35 | \n", "
\n", " | Airline | \n", "Source | \n", "Destination | \n", "Route | \n", "Total_Stops | \n", "Additional_Info | \n", "Price | \n", "Journey_day | \n", "Journey_month | \n", "Dep_hour | \n", "Dep_min | \n", "Arrival_hour | \n", "Arrival_min | \n", "Duration_hours | \n", "Duration_mins | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "IndiGo | \n", "Banglore | \n", "New Delhi | \n", "BLR → DEL | \n", "non-stop | \n", "No info | \n", "3897 | \n", "24 | \n", "3 | \n", "22 | \n", "20 | \n", "1 | \n", "10 | \n", "2 | \n", "50 | \n", "
1 | \n", "Air India | \n", "Kolkata | \n", "Banglore | \n", "CCU → IXR → BBI → BLR | \n", "2 stops | \n", "No info | \n", "7662 | \n", "1 | \n", "5 | \n", "5 | \n", "50 | \n", "13 | \n", "15 | \n", "7 | \n", "25 | \n", "
2 | \n", "Jet Airways | \n", "Delhi | \n", "Cochin | \n", "DEL → LKO → BOM → COK | \n", "2 stops | \n", "No info | \n", "13882 | \n", "9 | \n", "6 | \n", "9 | \n", "25 | \n", "4 | \n", "25 | \n", "19 | \n", "0 | \n", "
3 | \n", "IndiGo | \n", "Kolkata | \n", "Banglore | \n", "CCU → NAG → BLR | \n", "1 stop | \n", "No info | \n", "6218 | \n", "12 | \n", "5 | \n", "18 | \n", "5 | \n", "23 | \n", "30 | \n", "5 | \n", "25 | \n", "
4 | \n", "IndiGo | \n", "Banglore | \n", "New Delhi | \n", "BLR → NAG → DEL | \n", "1 stop | \n", "No info | \n", "13302 | \n", "1 | \n", "3 | \n", "16 | \n", "50 | \n", "21 | \n", "35 | \n", "4 | \n", "45 | \n", "
\n", " | Airline_Air India | \n", "Airline_GoAir | \n", "Airline_IndiGo | \n", "Airline_Jet Airways | \n", "Airline_Jet Airways Business | \n", "Airline_Multiple carriers | \n", "Airline_Multiple carriers Premium economy | \n", "Airline_SpiceJet | \n", "Airline_Trujet | \n", "Airline_Vistara | \n", "Airline_Vistara Premium economy | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
1 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
2 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
3 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
4 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
\n", " | Destination_Cochin | \n", "Destination_Delhi | \n", "Destination_Hyderabad | \n", "Destination_Kolkata | \n", "Destination_New Delhi | \n", "
---|---|---|---|---|---|
0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
2 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
3 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
4 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
\n", " | Source_Chennai | \n", "Source_Delhi | \n", "Source_Kolkata | \n", "Source_Mumbai | \n", "
---|---|---|---|---|
0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
1 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "
2 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "
3 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "
4 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
\n", " | Airline | \n", "Source | \n", "Destination | \n", "Route | \n", "Total_Stops | \n", "Additional_Info | \n", "Price | \n", "Journey_day | \n", "Journey_month | \n", "Dep_hour | \n", "Dep_min | \n", "Arrival_hour | \n", "Arrival_min | \n", "Duration_hours | \n", "Duration_mins | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "IndiGo | \n", "Banglore | \n", "New Delhi | \n", "BLR → DEL | \n", "non-stop | \n", "No info | \n", "3897 | \n", "24 | \n", "3 | \n", "22 | \n", "20 | \n", "1 | \n", "10 | \n", "2 | \n", "50 | \n", "
1 | \n", "Air India | \n", "Kolkata | \n", "Banglore | \n", "CCU → IXR → BBI → BLR | \n", "2 stops | \n", "No info | \n", "7662 | \n", "1 | \n", "5 | \n", "5 | \n", "50 | \n", "13 | \n", "15 | \n", "7 | \n", "25 | \n", "
2 | \n", "Jet Airways | \n", "Delhi | \n", "Cochin | \n", "DEL → LKO → BOM → COK | \n", "2 stops | \n", "No info | \n", "13882 | \n", "9 | \n", "6 | \n", "9 | \n", "25 | \n", "4 | \n", "25 | \n", "19 | \n", "0 | \n", "
3 | \n", "IndiGo | \n", "Kolkata | \n", "Banglore | \n", "CCU → NAG → BLR | \n", "1 stop | \n", "No info | \n", "6218 | \n", "12 | \n", "5 | \n", "18 | \n", "5 | \n", "23 | \n", "30 | \n", "5 | \n", "25 | \n", "
4 | \n", "IndiGo | \n", "Banglore | \n", "New Delhi | \n", "BLR → NAG → DEL | \n", "1 stop | \n", "No info | \n", "13302 | \n", "1 | \n", "3 | \n", "16 | \n", "50 | \n", "21 | \n", "35 | \n", "4 | \n", "45 | \n", "
\n", " | Total_Stops | \n", "Price | \n", "Journey_day | \n", "Journey_month | \n", "Dep_hour | \n", "Dep_min | \n", "Arrival_hour | \n", "Arrival_min | \n", "Duration_hours | \n", "Duration_mins | \n", "... | \n", "Airline_Vistara Premium economy | \n", "Source_Chennai | \n", "Source_Delhi | \n", "Source_Kolkata | \n", "Source_Mumbai | \n", "Destination_Cochin | \n", "Destination_Delhi | \n", "Destination_Hyderabad | \n", "Destination_Kolkata | \n", "Destination_New Delhi | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0 | \n", "3897 | \n", "24 | \n", "3 | \n", "22 | \n", "20 | \n", "1 | \n", "10 | \n", "2 | \n", "50 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
1 | \n", "2 | \n", "7662 | \n", "1 | \n", "5 | \n", "5 | \n", "50 | \n", "13 | \n", "15 | \n", "7 | \n", "25 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
2 | \n", "2 | \n", "13882 | \n", "9 | \n", "6 | \n", "9 | \n", "25 | \n", "4 | \n", "25 | \n", "19 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
3 | \n", "1 | \n", "6218 | \n", "12 | \n", "5 | \n", "18 | \n", "5 | \n", "23 | \n", "30 | \n", "5 | \n", "25 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
4 | \n", "1 | \n", "13302 | \n", "1 | \n", "3 | \n", "16 | \n", "50 | \n", "21 | \n", "35 | \n", "4 | \n", "45 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
5 rows × 30 columns
\n", "\n", " | Total_Stops | \n", "Journey_day | \n", "Journey_month | \n", "Dep_hour | \n", "Dep_min | \n", "Arrival_hour | \n", "Arrival_min | \n", "Duration_hours | \n", "Duration_mins | \n", "Airline_Air India | \n", "... | \n", "Airline_Vistara Premium economy | \n", "Source_Chennai | \n", "Source_Delhi | \n", "Source_Kolkata | \n", "Source_Mumbai | \n", "Destination_Cochin | \n", "Destination_Delhi | \n", "Destination_Hyderabad | \n", "Destination_Kolkata | \n", "Destination_New Delhi | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0 | \n", "24 | \n", "3 | \n", "22 | \n", "20 | \n", "1 | \n", "10 | \n", "2 | \n", "50 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
1 | \n", "2 | \n", "1 | \n", "5 | \n", "5 | \n", "50 | \n", "13 | \n", "15 | \n", "7 | \n", "25 | \n", "1 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
2 | \n", "2 | \n", "9 | \n", "6 | \n", "9 | \n", "25 | \n", "4 | \n", "25 | \n", "19 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
3 | \n", "1 | \n", "12 | \n", "5 | \n", "18 | \n", "5 | \n", "23 | \n", "30 | \n", "5 | \n", "25 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
4 | \n", "1 | \n", "1 | \n", "3 | \n", "16 | \n", "50 | \n", "21 | \n", "35 | \n", "4 | \n", "45 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
5 rows × 29 columns
\n", "DecisionTreeRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeRegressor()
RandomizedSearchCV(cv=5, estimator=DecisionTreeRegressor(),\n", " param_distributions={'ccp_alpha': [0.001, 0.05, 0.1],\n", " 'max_depth': [5, 10, 15, 20],\n", " 'max_features': [5, 10, 15, 20]},\n", " random_state=42, scoring='neg_mean_squared_error',\n", " verbose=2)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomizedSearchCV(cv=5, estimator=DecisionTreeRegressor(),\n", " param_distributions={'ccp_alpha': [0.001, 0.05, 0.1],\n", " 'max_depth': [5, 10, 15, 20],\n", " 'max_features': [5, 10, 15, 20]},\n", " random_state=42, scoring='neg_mean_squared_error',\n", " verbose=2)
DecisionTreeRegressor()
DecisionTreeRegressor()
DecisionTreeRegressor(ccp_alpha=0.1, max_depth=15, max_features=20)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeRegressor(ccp_alpha=0.1, max_depth=15, max_features=20)
RandomForestRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestRegressor()
RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(),\n", " param_distributions={'max_depth': [5, 10, 15, 20, 25, 30],\n", " 'max_features': ['auto', 'sqrt'],\n", " 'min_samples_leaf': [1, 2, 5, 10],\n", " 'min_samples_split': [2, 5, 10, 15,\n", " 100],\n", " 'n_estimators': [100, 200, 300, 400,\n", " 500, 600, 700, 800,\n", " 900, 1000, 1100,\n", " 1200]},\n", " random_state=42, scoring='neg_mean_squared_error',\n", " verbose=2)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(),\n", " param_distributions={'max_depth': [5, 10, 15, 20, 25, 30],\n", " 'max_features': ['auto', 'sqrt'],\n", " 'min_samples_leaf': [1, 2, 5, 10],\n", " 'min_samples_split': [2, 5, 10, 15,\n", " 100],\n", " 'n_estimators': [100, 200, 300, 400,\n", " 500, 600, 700, 800,\n", " 900, 1000, 1100,\n", " 1200]},\n", " random_state=42, scoring='neg_mean_squared_error',\n", " verbose=2)
RandomForestRegressor()
RandomForestRegressor()
RandomForestRegressor(max_depth=20, max_features='auto', min_samples_split=15,\n", " n_estimators=700)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestRegressor(max_depth=20, max_features='auto', min_samples_split=15,\n", " n_estimators=700)
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " n_estimators=10, n_jobs=None, num_parallel_tree=None,\n", " predictor=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " n_estimators=10, n_jobs=None, num_parallel_tree=None,\n", " predictor=None, random_state=None, ...)
RandomizedSearchCV(cv=5,\n", " estimator=XGBRegressor(base_score=None, booster=None,\n", " callbacks=None,\n", " colsample_bylevel=None,\n", " colsample_bynode=None,\n", " colsample_bytree=None,\n", " early_stopping_rounds=None,\n", " enable_categorical=False,\n", " eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None,\n", " grow_policy=None,\n", " importance_type=None,\n", " interaction_constraints=None,\n", " learning_rate=...\n", " max_delta_step=None, max_depth=None,\n", " max_leaves=None,\n", " min_child_weight=None, missing=nan,\n", " monotone_constraints=None,\n", " n_estimators=10, n_jobs=None,\n", " num_parallel_tree=None,\n", " predictor=None, random_state=None, ...),\n", " param_distributions={'learning_rate': [0.005, 0.01, 0.05,\n", " 0.1, 1],\n", " 'max_depth': [5, 10, 15, 20],\n", " 'n_estimators': [100, 500, 1000]},\n", " random_state=42, scoring='neg_mean_squared_error',\n", " verbose=2)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomizedSearchCV(cv=5,\n", " estimator=XGBRegressor(base_score=None, booster=None,\n", " callbacks=None,\n", " colsample_bylevel=None,\n", " colsample_bynode=None,\n", " colsample_bytree=None,\n", " early_stopping_rounds=None,\n", " enable_categorical=False,\n", " eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None,\n", " grow_policy=None,\n", " importance_type=None,\n", " interaction_constraints=None,\n", " learning_rate=...\n", " max_delta_step=None, max_depth=None,\n", " max_leaves=None,\n", " min_child_weight=None, missing=nan,\n", " monotone_constraints=None,\n", " n_estimators=10, n_jobs=None,\n", " num_parallel_tree=None,\n", " predictor=None, random_state=None, ...),\n", " param_distributions={'learning_rate': [0.005, 0.01, 0.05,\n", " 0.1, 1],\n", " 'max_depth': [5, 10, 15, 20],\n", " 'n_estimators': [100, 500, 1000]},\n", " random_state=42, scoring='neg_mean_squared_error',\n", " verbose=2)
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " n_estimators=10, n_jobs=None, num_parallel_tree=None,\n", " predictor=None, random_state=None, ...)
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " n_estimators=10, n_jobs=None, num_parallel_tree=None,\n", " predictor=None, random_state=None, ...)
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=0.005, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=10, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " n_estimators=1000, n_jobs=None, num_parallel_tree=None,\n", " objectvie='reg:squarederror', predictor=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=0.005, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=10, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " n_estimators=1000, n_jobs=None, num_parallel_tree=None,\n", " objectvie='reg:squarederror', predictor=None, ...)
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()