import gradio as gr from huggingface_hub import InferenceClient from typing import List, Tuple import fitz # PyMuPDF from sentence_transformers import SentenceTransformer, util import numpy as np import faiss client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Placeholder for the app's state class MyApp: def __init__(self) -> None: self.documents = [] self.embeddings = None self.index = None self.load_pdf("THEDIA1.pdf") self.build_vector_db() def load_pdf(self, file_path: str) -> None: """Extracts text from a PDF file and stores it in the app's documents.""" doc = fitz.open(file_path) self.documents = [] for page_num in range(len(doc)): page = doc[page_num] text = page.get_text() self.documents.append({"page": page_num + 1, "content": text}) print("PDF processed successfully!") def build_vector_db(self) -> None: """Builds a vector database using the content of the PDF.""" model = SentenceTransformer('all-MiniLM-L6-v2') self.embeddings = model.encode([doc["content"] for doc in self.documents]) self.index = faiss.IndexFlatL2(self.embeddings.shape[1]) self.index.add(np.array(self.embeddings)) print("Vector database built successfully!") def search_documents(self, query: str, k: int = 3) -> List[str]: """Searches for relevant documents using vector similarity.""" model = SentenceTransformer('all-MiniLM-L6-v2') query_embedding = model.encode([query]) D, I = self.index.search(np.array(query_embedding), k) results = [self.documents[i]["content"] for i in I[0]] return results if results else ["No relevant documents found."] app = MyApp() def respond( message: str, history: List[Tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): system_message = "You are a concisely speaking empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. you must say one thing at a time and ask follow up questions to continue the chat. " messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # RAG - Retrieve relevant documents retrieved_docs = app.search_documents(message) context = "\n".join(retrieved_docs) messages.append({"role": "system", "content": "Relevant documents: " + context}) response = "" for message in client.chat_completion( messages, max_tokens=1024, stream=True, temperature=0.95, top_p=0.7, ): token = message.choices[0].delta.content response += token yield response demo = gr.Blocks() with demo: gr.Markdown( "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. " "We are not medical practitioners, and the use of this chatbot is at your own responsibility." ) chatbot = gr.ChatInterface( respond, examples=[ ["I feel overwhelmed with work."], ["Can you guide me through a quick meditation?"], ["How do I stop worrying about things I can't control?"], ["What are some DBT skills for managing anxiety?"], ["Can you explain mindfulness in DBT?"], ["What is radical acceptance?"], ["How can I practice distress tolerance?"], ["What are some techniques to handle distressing situations?"], ["How does DBT help with emotional regulation?"], ["Can you give me an example of an interpersonal effectiveness skill?"] ], title='DBT Coach 👩‍⚕️' ) if __name__ == "__main__": demo.launch()