import os import gradio as gr from google import genai from google.genai.types import GenerateContentConfig, GoogleSearch, Tool # Initialize GenAI Client API_KEY = os.getenv("GOOGLE_API_KEY") # Ensure to set this in Hugging Face Secrets client = genai.Client(api_key=API_KEY) MODEL_ID = "gemini-2.0-flash-exp" # Replace with your desired model ID def google_search_query(question): try: # Define the Google Search Tool google_search_tool = Tool(google_search=GoogleSearch()) # Generate the response response = client.models.generate_content( model=MODEL_ID, contents=question, config=GenerateContentConfig(tools=[google_search_tool]), ) # Extract AI response and search results ai_response = response.text # AI response as plain text search_results = response.candidates[0].grounding_metadata.search_entry_point.rendered_content return ai_response, search_results except Exception as e: return f"Error: {str(e)}", "" # Gradio Interface app = gr.Interface( fn=google_search_query, inputs=gr.Textbox(lines=2, label="Ask a Question"), outputs=[ gr.Textbox(label="AI Response"), gr.HTML(label="Search Results"), ], title="Google Search with Gemini AI", description="Ask a question, and the AI will use Google search tools to provide an answer along with contextual search results.", ) if __name__ == "__main__": app.launch(share=True)