import gradio as gr import pickle import numpy as np # Load trained model and encoders model = pickle.load(open("model.pkl", "rb")) encoders = pickle.load(open("encoders.pkl", "rb")) def recommend_stack(project_type, team_size, perf_need, experience): pt = encoders["project_type"].transform([project_type])[0] pn = encoders["perf_need"].transform([perf_need])[0] ex = encoders["experience"].transform([experience])[0] input_data = np.array([[pt, team_size, pn, ex]]) pred_encoded = model.predict(input_data)[0] return f"🔧 Recommended Tech Stack: {encoders['stack'].inverse_transform([pred_encoded])[0]}" demo = gr.Interface( fn=recommend_stack, inputs=[ gr.Radio(["Web App", "API", "ML App", "Real-time App"], label="Project Type"), gr.Slider(1, 10, step=1, label="Team Size"), gr.Radio(["Low", "Medium", "High"], label="Performance Need"), gr.Radio(["Beginner", "Intermediate", "Expert"], label="Experience Level") ], outputs="text", title="Tech Stack Advisor", description="Get a recommended tech stack based on your project and team!" ) demo.launch(server_name="0.0.0.0", server_port=5550)