import os import re import string from sentence_transformers import SentenceTransformer from langchain_text_splitters import CharacterTextSplitter import pandas as pd DATA_FILE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "CountMonteCristoFull.txt") DENSE_RETRIEVER_MODEL_NAME = "all-MiniLM-L6-v2" CROSS_ENCODER_MODEL_NAME = 'cross-encoder/ms-marco-MiniLM-L-12-v2' LLM_CORE_MODEL_NAME = "groq/llama3-8b-8192" with open(DATA_FILE_PATH, "r", encoding="utf-8") as f: data_corpus = f.read() splitter = CharacterTextSplitter(separator="\n\n", chunk_size=10_000, chunk_overlap=1_000) text_chunks = splitter.create_documents([data_corpus]) prev_chapter_name = '' for chunk in text_chunks: chunk.metadata['belongs_to'] = set() curr_chapter_name = '' index_start_chapter_name = chunk.page_content.find('Chapter') if index_start_chapter_name == -1: curr_chapter_name = prev_chapter_name else: # if prev_chapter_name is not empty and next chapter start further than first 40% of the chunk. # This means that the name of the prev chapter isn't in this chunk, but relevant info can be found. if prev_chapter_name != '' and index_start_chapter_name > int(len(chunk.page_content) * 0.4): chunk.metadata['belongs_to'].add(prev_chapter_name) index_end_chapter_name = chunk.page_content.find('\n\n', index_start_chapter_name) curr_chapter_name = chunk.page_content[index_start_chapter_name:index_end_chapter_name] prev_chapter_name = curr_chapter_name chunk.metadata['belongs_to'].add(curr_chapter_name) chunk.metadata['belongs_to'] = list(chunk.metadata['belongs_to']) def clean_text(text): text = text.translate(str.maketrans('', '', string.punctuation)) text = text.lower() text = re.sub(r'[^a-zA-Z0-9\s]', '', text) text = re.sub(r'\s+', ' ', text) return text.strip() dense_model = SentenceTransformer(DENSE_RETRIEVER_MODEL_NAME) def calculate_embeddings(text): return dense_model.encode(text, convert_to_tensor=True) chunked_data_corpus = [] for index, chunk in enumerate(text_chunks): chunked_data_corpus.append({ 'raw_text': chunk.page_content, 'cleaned_text': clean_text(chunk.page_content), 'chunk_embedding': calculate_embeddings(chunk.page_content), 'chapter_name': chunk.metadata['belongs_to'] }) chunked_data_corpus_df = pd.DataFrame(chunked_data_corpus) chunked_data_corpus_df.to_csv('chunked_data_corpus.csv', index=False)