import logging import gradio as gr from config import * from videomatch import index_hashes_for_video, get_decent_distance, \ get_video_index, compare_videos, get_change_points, get_videomatch_df from plot import plot_comparison, plot_multi_comparison, plot_segment_comparison logging.basicConfig() logging.getLogger().setLevel(logging.INFO) def get_comparison(url, target, MIN_DISTANCE = 4): """ Function for Gradio to combine all helper functions""" video_index, hash_vectors = get_video_index(url) target_index, _ = get_video_index(target) lims, D, I, hash_vectors = compare_videos(hash_vectors, target_index, MIN_DISTANCE = MIN_DISTANCE) fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = MIN_DISTANCE) return fig def get_auto_comparison(url, target, smoothing_window_size=10, method="CUSUM"): """ Function for Gradio to combine all helper functions""" distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE) if distance == None: return None raise gr.Error("No matches found!") video_index, hash_vectors = get_video_index(url) target_index, _ = get_video_index(target) lims, D, I, hash_vectors = compare_videos(hash_vectors, target_index, MIN_DISTANCE = distance) # fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = distance) df = get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False) change_points = get_change_points(df, smoothing_window_size=smoothing_window_size, method=method) fig = plot_segment_comparison(df, change_points) return fig def get_auto_edit_decision(url, target, smoothing_window_size=10): """ Function for Gradio to combine all helper functions""" distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE) if distance == None: return None raise gr.Error("No matches found!") video_index, hash_vectors = get_video_index(url) target_index, _ = get_video_index(target) lims, D, I, hash_vectors = compare_videos(hash_vectors, target_index, MIN_DISTANCE = distance) df = get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False) change_points = get_change_points(df, smoothing_window_size=smoothing_window_size, method="ROBUST") edit_decision_list = [] for cp in change_points: decision = f"Video at time {cp.start_time} returns {cp.metric}" # edit_decision_list.append(f"Video at time {cp.start_time} returns {cp.metric}") fig = plot_multi_comparison(df, change_points) return fig video_urls = ["https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1", "https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1", "https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1", "https://drive.google.com/uc?id=1XW0niHR1k09vPNv1cp6NvdGXe7FHJc1D&export=download", "https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1"] index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal, inputs="text", outputs="text", examples=video_urls, cache_examples=True) compare_iface = gr.Interface(fn=get_comparison, inputs=["text", "text", gr.Slider(2, 30, 4, step=2)], outputs="plot", examples=[[x, video_urls[-1]] for x in video_urls[:-1]]) auto_compare_iface = gr.Interface(fn=get_auto_comparison, inputs=["text", "text", gr.Slider(1, 50, 10, step=1), gr.Dropdown(choices=["CUSUM", "Robust"], value="Robust")], outputs="plot", examples=[[x, video_urls[-1]] for x in video_urls[:-1]]) iface = gr.TabbedInterface([auto_compare_iface, compare_iface, index_iface,], ["AutoCompare", "Compare", "Index"]) if __name__ == "__main__": import matplotlib matplotlib.use('SVG') # To be able to plot in gradio iface.launch(show_error=True) #iface.launch(auth=("test", "test"), share=True, debug=True)