import logging import os import json import matplotlib.pyplot as plt import gradio as gr from faiss import read_index_binary, write_index_binary from config import * from videomatch import index_hashes_for_video, get_decent_distance, \ get_video_index, compare_videos, get_change_points, get_videomatch_df from plot import plot_comparison, plot_multi_comparison, plot_segment_comparison logging.basicConfig() logging.getLogger().setLevel(logging.INFO) def transfer_data_indices_to_temp(temp_path = VIDEO_DIRECTORY, data_path='./data'): """ The binary indices created from the .json file are not stored in the temporary directory This function will load these indices and write them to the temporary directory. Doing it this way preserves the way to link dynamically downloaded files and the static files are the same """ index_files = os.listdir(data_path) for index_file in index_files: # Read from static location and write to temp storage binary_index = read_index_binary(os.path.join(data_path, index_file)) write_index_binary(binary_index, f'{temp_path}/{index_file}') def compare(url, target): """ Compare a single url (user submitted) to a single target entry and return the corresponding figure and decision (.json-esque list of dictionaries) args: - url: User submitted url which will be downloaded and cached - target: Target entry with a 'url' and 'mp4' attribute """ target_title = target['url'] target_mp4 = target['mp4'] # Get source and target indices source_index, source_hash_vectors = get_video_index(url) target_index, _ = get_video_index(target_mp4) # Get decent distance by comparing url index with the target hash vectors + target index distance = get_decent_distance(source_index, source_hash_vectors, target_index, MIN_DISTANCE, MAX_DISTANCE) if distance == None: logging.info(f"No matches found between {url} and {target_mp4}!") return plt.figure(), [] else: # Compare videos with heuristic distance lims, D, I, hash_vectors = compare_videos(source_hash_vectors, target_index, MIN_DISTANCE = distance) # Get dataframe holding all information df = get_videomatch_df(lims, D, I, hash_vectors, distance) # Determine change point using ROBUST method based on column ROLL_OFFSET_MODE change_points = get_change_points(df, metric="ROLL_OFFSET_MODE", method="ROBUST") # Plot and get figure and .json-style segment decision fig, segment_decision = plot_segment_comparison(df, change_points, video_id=target_title, video_mp4=target_mp4) return fig, segment_decision def multiple_comparison(url, return_figure=False): """ Compare a single url (user submitted) to all target entries and return the corresponding figures and decisions (.json-style list of dictionaries) args: - url: User submitted url which will be downloaded and cached - return_figure: Parameter to decide if to return figures or decision, needed for Gradio plotting """ # Figure and decision (list of dicts) storage figures, decisions = [], [] for target in TARGET_ENTRIES: # Make comparison fig, segment_decision = compare(url, target) # Add decisions to global decision list decisions.extend(segment_decision) figures.append(fig) if return_figure: return figures return decisions def plot_multiple_comparison(url): return multiple_comparison(url, return_figure=True) # Write stored target videos to temporary storage transfer_data_indices_to_temp() # NOTE: Only works after doing 'git lfs pull' to actually obtain the .index files # Load stored target videos with open('apb2022.json', "r") as json_file: TARGET_ENTRIES = json.load(json_file) EXAMPLE_VIDEO_URLS = ["https://www.youtube.com/watch?v=qIaqMqMweM4", "https://drive.google.com/uc?id=1Y1-ypXOvLrp1x0cjAe_hMobCEdA0UbEo&export=download", "https://video.twimg.com/amplify_video/1575576025651617796/vid/480x852/jP057nPfPJSUM0kR.mp4?tag=14", "https://drive.google.com/uc?id=1XW0niHR1k09vPNv1cp6NvdGXe7FHJc1D&export=download"] index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal, inputs="text", outputs="text", examples=EXAMPLE_VIDEO_URLS) # compare_iface = gr.Interface(fn=get_comparison, # inputs=["text", "text", gr.Slider(2, 30, 4, step=2)], # outputs="plot", # examples=[[x, example_video_urls[-1]] for x in example_video_urls[:-1]]) plot_compare_iface = gr.Interface(fn=plot_multiple_comparison, inputs=["text"], outputs=[gr.Plot(label=entry['url']) for entry in TARGET_ENTRIES], examples=EXAMPLE_VIDEO_URLS) auto_compare_iface = gr.Interface(fn=multiple_comparison, inputs=["text"], outputs=["json"], examples=EXAMPLE_VIDEO_URLS) iface = gr.TabbedInterface([auto_compare_iface, plot_compare_iface, index_iface], ["AutoCompare", "PlotAutoCompare", "Index"]) if __name__ == "__main__": import matplotlib matplotlib.use('SVG') # To be able to plot in gradio iface.launch(show_error=True) #iface.launch(auth=("test", "test"), share=True, debug=True)