import os import gradio as gr import spaces from infer_rvc_python import BaseLoader import random import logging import time import soundfile as sf from infer_rvc_python.main import download_manager import zipfile import edge_tts import asyncio import librosa import traceback import numpy as np from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter from pedalboard.io import AudioFile from pydub import AudioSegment import noisereduce as nr logging.getLogger("infer_rvc_python").setLevel(logging.ERROR) converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None) title = "
WELCOME TO RVC⚡RTECHS
" description = "This RVC is provided for RTECHS MEDIA PRODUCTIONS AND SOFTWARE DEV'S LOCAL purposes only. The authors (@Robel Adugna) and contributors of this project do not endorse or encourage any misuse or unethical use of this software. Any use of this software for purposes other than those intended is solely at the user's own risk. The authors and contributors shall not be held responsible for any damages or liabilities arising from the use of this demo inappropriately." theme = "aliabid94/new-theme" PITCH_ALGO_OPT = [ "pm", "harvest", "crepe", "rmvpe", "rmvpe+" ] def find_files(directory): file_paths = [] for filename in os.listdir(directory): # Check if the file has the desired extension if filename.endswith('.pth') or filename.endswith('.zip') or filename.endswith('.index'): # If yes, add the file path to the list file_paths.append(os.path.join(directory, filename)) return file_paths def unzip_in_folder(my_zip, my_dir): with zipfile.ZipFile(my_zip) as zip: for zip_info in zip.infolist(): if zip_info.is_dir(): continue zip_info.filename = os.path.basename(zip_info.filename) zip.extract(zip_info, my_dir) def find_my_model(a_, b_): if a_ is None or a_.endswith(".pth"): return a_, b_ txt_files = [] for base_file in [a_, b_]: if base_file is not None and base_file.endswith(".txt"): txt_files.append(base_file) directory = os.path.dirname(a_) for txt in txt_files: with open(txt, 'r') as file: first_line = file.readline() download_manager( url=first_line.strip(), path=directory, extension="", ) for f in find_files(directory): if f.endswith(".zip"): unzip_in_folder(f, directory) model = None index = None end_files = find_files(directory) for ff in end_files: if ff.endswith(".pth"): model = os.path.join(directory, ff) gr.Info(f"Model found: {ff}") if ff.endswith(".index"): index = os.path.join(directory, ff) gr.Info(f"Index found: {ff}") if not model: gr.Error(f"Model not found in: {end_files}") if not index: gr.Warning("Index not found") return model, index def add_audio_effects(audio_list): print("Audio effects") result = [] for audio_path in audio_list: try: output_path = f'{os.path.splitext(audio_path)[0]}_effects.wav' # Initialize audio effects plugins board = Pedalboard( [ HighpassFilter(), Compressor(ratio=4, threshold_db=-15), Reverb(room_size=0.10, dry_level=0.8, wet_level=0.2, damping=0.7) ] ) with AudioFile(audio_path) as f: with AudioFile(output_path, 'w', f.samplerate, f.num_channels) as o: # Read one second of audio at a time, until the file is empty: while f.tell() < f.frames: chunk = f.read(int(f.samplerate)) effected = board(chunk, f.samplerate, reset=False) o.write(effected) result.append(output_path) except Exception as e: traceback.print_exc() print(f"Error noisereduce: {str(e)}") result.append(audio_path) return result def apply_noisereduce(audio_list): # https://github.com/saif/Audio-Denoiser print("Noise reduction") result = [] for audio_path in audio_list: out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav' try: # Load audio file audio = AudioSegment.from_file(audio_path) # Convert audio to numpy array samples = np.array(audio.get_array_of_samples()) # Reduce noise reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6) # Convert reduced noise signal back to audio reduced_audio = AudioSegment( reduced_noise.tobytes(), frame_rate=audio.frame_rate, sample_width=audio.sample_width, channels=audio.channels ) # Save reduced audio to file reduced_audio.export(out_path, format="wav") result.append(out_path) except Exception as e: traceback.print_exc() print(f"Error in noise reduction: {str(e)}") result.append(audio_path) return result def split_audio_into_chunks(audio_file, chunk_length_ms=30000): """ Splits an audio file into smaller chunks. :param audio_file: Path to the input audio file. :param chunk_length_ms: Length of each chunk in milliseconds (default is 30 seconds). :return: List of chunk file paths. """ try: audio = AudioSegment.from_file(audio_file) chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)] chunk_paths = [] base_name = os.path.splitext(os.path.basename(audio_file))[0] output_dir = os.path.join(os.path.dirname(audio_file), f"{base_name}_chunks") os.makedirs(output_dir, exist_ok=True) for index, chunk in enumerate(chunks): chunk_path = os.path.join(output_dir, f"{base_name}_chunk_{index + 1}.wav") chunk.export(chunk_path, format="wav") chunk_paths.append(chunk_path) return chunk_paths except Exception as e: traceback.print_exc() print(f"Error splitting audio into chunks: {str(e)}") return [audio_file] @spaces.GPU() def convert_now(audio_files, random_tag, converter): return converter( audio_files, random_tag, overwrite=False, parallel_workers=8 ) def run( audio_files, file_m, pitch_alg, pitch_lvl, file_index, index_inf, r_m_f, e_r, c_b_p, active_noise_reduce, audio_effects, chunk_length_ms=30000 ): if not audio_files: raise ValueError("Please provide audio files") if isinstance(audio_files, str): audio_files = [audio_files] if file_m is not None and file_m.endswith(".txt"): file_m, file_index = find_my_model(file_m, file_index) print(file_m, file_index) random_tag = "USER_" + str(random.randint(10000000, 99999999)) converter.apply_conf( tag=random_tag, file_model=file_m, pitch_algo=pitch_alg, pitch_lvl=pitch_lvl, file_index=file_index, index_influence=index_inf, respiration_median_filtering=r_m_f, envelope_ratio=e_r, consonant_breath_protection=c_b_p, resample_sr=44100 if audio_files[0].endswith('.mp3') else 0, ) time.sleep(0.1) # Split each audio file into chunks chunked_audio_files = [] for audio_file in audio_files: chunked_audio_files.extend(split_audio_into_chunks(audio_file, chunk_length_ms)) result = convert_now(chunked_audio_files, random_tag, converter) if active_noise_reduce: result = apply_noisereduce(result) if audio_effects: result = add_audio_effects(result) return result def audio_conf(): return gr.File( label="Audio files", file_count="multiple", type="filepath", container=True, ) def model_conf(): return gr.File( label="Model file", type="filepath", height=130, ) def pitch_algo_conf(): return gr.Dropdown( PITCH_ALGO_OPT, value=PITCH_ALGO_OPT[4], label="Pitch algorithm", visible=True, interactive=True, ) def pitch_lvl_conf(): return gr.Slider( label="Pitch level", minimum=-24, maximum=24, step=1, value=0, visible=True, interactive=True, ) def index_conf(): return gr.File( label="Index file", type="filepath", height=130, ) def index_inf_conf(): return gr.Slider( minimum=0, maximum=1, label="Index influence", value=0.75, ) def respiration_filter_conf(): return gr.Slider( minimum=0, maximum=7, label="Respiration median filtering", value=3, step=1, interactive=True, ) def envelope_ratio_conf(): return gr.Slider( minimum=0, maximum=1, label="Envelope ratio", value=0.25, interactive=True, ) def consonant_protec_conf(): return gr.Slider( minimum=0, maximum=0.5, label="Consonant breath protection", value=0.5, interactive=True, ) def button_conf(): return gr.Button( "Inference", variant="primary", ) def output_conf(): return gr.File( label="Result", file_count="multiple", interactive=False, ) def active_tts_conf(): return gr.Checkbox( False, label="TTS", container=False, ) def tts_voice_conf(): return gr.Dropdown( label="TTS Voice", choices=[ "en-US-EmmaMultilingualNeural-Female", "en-US-GuyMultilingualNeural-Male", "en-GB-SoniaNeural-Female", "fr-FR-DeniseNeural-Female" ], visible=False, value="en-US-EmmaMultilingualNeural-Female", ) def tts_text_conf(): return gr.Textbox( value="", placeholder="Write the text here...", label="Text", visible=False, lines=3, ) def tts_button_conf(): return gr.Button( "Process TTS", variant="secondary", visible=False, ) def tts_play_conf(): return gr.Checkbox( False, label="Play", container=False, visible=False, ) def sound_gui(): return gr.Audio( value=None, type="filepath", autoplay=True, visible=False, ) def denoise_conf(): return gr.Checkbox( False, label="Denoise", container=False, visible=True, ) def effects_conf(): return gr.Checkbox( False, label="Effects", container=False, visible=True, ) def infer_tts_audio(tts_voice, tts_text, play_tts): out_dir = "output" folder_tts = "USER_" + str(random.randint(10000, 99999)) os.makedirs(out_dir, exist_ok=True) os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True) out_path = os.path.join(out_dir, folder_tts, "tts.mp3") asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path)) if play_tts: return [out_path], out_path return [out_path], None def show_components_tts(value_active): return gr.update( visible=value_active ), gr.update( visible=value_active ), gr.update( visible=value_active ), gr.update( visible=value_active ) def get_gui(theme): with gr.Blocks(theme=theme) as app: gr.Markdown(title) gr.Markdown(description) active_tts = active_tts_conf() with gr.Row(): with gr.Column(scale=1): tts_text = tts_text_conf() with gr.Column(scale=2): with gr.Row(): with gr.Column(): with gr.Row(): tts_voice = tts_voice_conf() tts_active_play = tts_play_conf() tts_button = tts_button_conf() tts_play = sound_gui() active_tts.change( fn=show_components_tts, inputs=[active_tts], outputs=[tts_voice, tts_text, tts_button, tts_active_play], ) aud = audio_conf() gr.HTML("
") tts_button.click( fn=infer_tts_audio, inputs=[tts_voice, tts_text, tts_active_play], outputs=[aud, tts_play], ) with gr.Column(): with gr.Row(): model = model_conf() indx = index_conf() algo = pitch_algo_conf() algo_lvl = pitch_lvl_conf() indx_inf = index_inf_conf() res_fc = respiration_filter_conf() envel_r = envelope_ratio_conf() const = consonant_protec_conf() denoise = denoise_conf() effects = effects_conf() inference_button = button_conf() output = output_conf() inference_button.click( fn=run, inputs=[ aud, model, algo, algo_lvl, indx, indx_inf, res_fc, envel_r, const, denoise, effects, ], outputs=[output], ) app.launch(share=True) get_gui(theme=theme)