import gradio as gr from huggingface_hub import InferenceClient from fastai.text.all import * from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Initialize Hugging Face Client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Load the medical model medical_learn = load_learner('model.pkl') # Medical model configuration medical_categories = ['Allergy', 'Anemia', 'Bronchitis', 'Diabetes', 'Diarrhea', 'Fatigue', 'Flu', 'Malaria', 'Stress'] def classify_medical_text(txt): try: pred, idx, probs = medical_learn.predict(txt) return dict(zip(medical_categories, map(float, probs))) except Exception as e: return {"error": str(e)} # Load the psychiatric model psychiatric_model_name = "nlp4good/psych-search" # Replace with the appropriate model psychiatric_tokenizer = AutoTokenizer.from_pretrained(psychiatric_model_name) psychiatric_model = AutoModelForSequenceClassification.from_pretrained(psychiatric_model_name) # Psychiatric model configuration psychiatric_labels = ['Depression', 'Anxiety', 'Bipolar Disorder', 'PTSD', 'OCD', 'Stress', 'Schizophrenia'] def classify_psychiatric_text(txt): try: inputs = psychiatric_tokenizer(txt, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = psychiatric_model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=1).squeeze().tolist() return dict(zip(psychiatric_labels, probabilities)) except Exception as e: return {"error": str(e)} # Chat-based Interface def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" try: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response except Exception as e: yield f"Error: {str(e)}" # Gradio Interfaces medical_interface = gr.Interface( fn=classify_medical_text, inputs=gr.Textbox(lines=2, label="Describe your symptoms in detail"), outputs=gr.Label(label="Medical Diagnosis"), examples=["I feel short of breath and have a high fever.", "My throat hurts and I keep sneezing.", "I am always thirsty."], description="Identify potential medical conditions based on symptoms." ) psychiatric_interface = gr.Interface( fn=classify_psychiatric_text, inputs=gr.Textbox(lines=2, label="Describe your mental health concerns in detail"), outputs=gr.Label(label="Psychiatric Analysis"), examples=["I feel hopeless and have no energy.", "I am unable to concentrate and feel anxious all the time.", "I have recurring intrusive thoughts."], description="Analyze potential mental health concerns based on input." ) chat_interface = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], description="Chat with an AI assistant for general inquiries or extended conversation." ) # Unified Gradio App with Tabs with gr.Blocks() as app: gr.Markdown("# Unified Medical and Psychiatric Assistant") with gr.Tab("Chat Assistant"): chat_interface.render() with gr.Tab("Medical Diagnosis"): medical_interface.render() with gr.Tab("Psychiatric Analysis"): psychiatric_interface.render() # Launch the App if __name__ == "__main__": app.launch()