Commit
·
0de8564
1
Parent(s):
123e33d
changes made in repo
Browse files- app.py +3 -0
- app1.py +0 -176
- appcsvhtml.py +0 -220
- appfinal.py +0 -193
- appfinalokokok.py +0 -199
- sample env.txt +2 -0
app.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
import json
|
6 |
import xml.etree.ElementTree as ET
|
7 |
import yaml
|
|
|
8 |
from bs4 import BeautifulSoup
|
9 |
from pptx import Presentation
|
10 |
from docx import Document
|
@@ -124,6 +125,8 @@ def load_file(file_name, file_type):
|
|
124 |
return None
|
125 |
|
126 |
# Watsonx API setup
|
|
|
|
|
127 |
watsonx_api_key = os.getenv("WATSONX_API_KEY")
|
128 |
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")
|
129 |
|
|
|
5 |
import json
|
6 |
import xml.etree.ElementTree as ET
|
7 |
import yaml
|
8 |
+
from dotenv import load_dotenv
|
9 |
from bs4 import BeautifulSoup
|
10 |
from pptx import Presentation
|
11 |
from docx import Document
|
|
|
125 |
return None
|
126 |
|
127 |
# Watsonx API setup
|
128 |
+
load_dotenv()
|
129 |
+
|
130 |
watsonx_api_key = os.getenv("WATSONX_API_KEY")
|
131 |
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")
|
132 |
|
app1.py
DELETED
@@ -1,176 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import tempfile
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
import streamlit as st
|
5 |
-
from langchain.document_loaders import PyPDFLoader, TextLoader
|
6 |
-
from langchain.indexes import VectorstoreIndexCreator
|
7 |
-
from langchain.chains import RetrievalQA
|
8 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
-
from langchain.chains import LLMChain
|
11 |
-
from langchain.prompts import PromptTemplate
|
12 |
-
|
13 |
-
from ibm_watson_machine_learning.foundation_models import Model
|
14 |
-
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
|
15 |
-
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
16 |
-
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
|
17 |
-
from pptx import Presentation
|
18 |
-
from docx import Document
|
19 |
-
|
20 |
-
# Load environment variables
|
21 |
-
load_dotenv()
|
22 |
-
|
23 |
-
# Watsonx API setup
|
24 |
-
watsonx_api_key = os.getenv("API_KEY")
|
25 |
-
watsonx_project_id = os.getenv("PROJECT_ID")
|
26 |
-
watsonx_url = "https://us-south.ml.cloud.ibm.com"
|
27 |
-
|
28 |
-
if not watsonx_api_key or not watsonx_project_id:
|
29 |
-
st.error("API Key or Project ID is not set. Please set them as environment variables.")
|
30 |
-
|
31 |
-
# Custom loader for DOCX files
|
32 |
-
class DocxLoader:
|
33 |
-
def __init__(self, file_path):
|
34 |
-
self.file_path = file_path
|
35 |
-
|
36 |
-
def load(self):
|
37 |
-
document = Document(self.file_path)
|
38 |
-
text_content = [para.text for para in document.paragraphs]
|
39 |
-
return " ".join(text_content)
|
40 |
-
|
41 |
-
# Custom loader for PPTX files
|
42 |
-
class PptxLoader:
|
43 |
-
def __init__(self, file_path):
|
44 |
-
self.file_path = file_path
|
45 |
-
|
46 |
-
def load(self):
|
47 |
-
presentation = Presentation(self.file_path)
|
48 |
-
text_content = []
|
49 |
-
for slide in presentation.slides:
|
50 |
-
for shape in slide.shapes:
|
51 |
-
if hasattr(shape, "text"):
|
52 |
-
text_content.append(shape.text)
|
53 |
-
return " ".join(text_content)
|
54 |
-
|
55 |
-
# Caching function to load various file types
|
56 |
-
@st.cache_resource
|
57 |
-
def load_file(uploaded_file, file_type):
|
58 |
-
loaders = []
|
59 |
-
|
60 |
-
# Save uploaded file to a temporary path
|
61 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_type}") as temp_file:
|
62 |
-
temp_file.write(uploaded_file.read())
|
63 |
-
temp_file_path = temp_file.name
|
64 |
-
|
65 |
-
if file_type == "pdf":
|
66 |
-
loaders = [PyPDFLoader(temp_file_path)]
|
67 |
-
elif file_type == "docx":
|
68 |
-
loader = DocxLoader(temp_file_path)
|
69 |
-
text = loader.load()
|
70 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_txt_file:
|
71 |
-
temp_txt_file.write(text.encode("utf-8"))
|
72 |
-
temp_txt_file_path = temp_txt_file.name
|
73 |
-
loaders = [TextLoader(temp_txt_file_path)]
|
74 |
-
elif file_type == "txt":
|
75 |
-
loaders = [TextLoader(temp_file_path)]
|
76 |
-
elif file_type == "pptx":
|
77 |
-
loader = PptxLoader(temp_file_path)
|
78 |
-
text = loader.load()
|
79 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_txt_file:
|
80 |
-
temp_txt_file.write(text.encode("utf-8"))
|
81 |
-
temp_txt_file_path = temp_txt_file.name
|
82 |
-
loaders = [TextLoader(temp_txt_file_path)]
|
83 |
-
else:
|
84 |
-
st.error("Unsupported file type.")
|
85 |
-
return None
|
86 |
-
|
87 |
-
# Create the index with the loaded documents
|
88 |
-
index = VectorstoreIndexCreator(
|
89 |
-
embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L12-v2"),
|
90 |
-
text_splitter=RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
|
91 |
-
).from_loaders(loaders)
|
92 |
-
|
93 |
-
return index
|
94 |
-
|
95 |
-
# Prompt template
|
96 |
-
prompt_template = PromptTemplate(
|
97 |
-
input_variables=["context", "question"],
|
98 |
-
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
99 |
-
I am a helpful assistant.
|
100 |
-
|
101 |
-
<|eot_id|>
|
102 |
-
{context}
|
103 |
-
<|start_header_id|>user<|end_header_id|>
|
104 |
-
{question}<|eot_id|>
|
105 |
-
"""
|
106 |
-
)
|
107 |
-
|
108 |
-
# Sidebar settings
|
109 |
-
with st.sidebar:
|
110 |
-
st.title("Watsonx RAG Demo")
|
111 |
-
model_name = st.selectbox("Model", ["meta-llama/llama-3-405b-instruct", "codellama/codellama-34b-instruct-hf", "ibm/granite-20b-multilingual"])
|
112 |
-
max_new_tokens = st.slider("Max output tokens", min_value=100, max_value=1000, value=300, step=100)
|
113 |
-
decoding_method = st.radio("Decoding Method", [DecodingMethods.GREEDY.value, DecodingMethods.SAMPLE.value])
|
114 |
-
st.info("Upload a PDF, DOCX, TXT, or PPTX file for RAG")
|
115 |
-
uploaded_file = st.file_uploader("Upload file", accept_multiple_files=False, type=["pdf", "docx", "txt", "pptx"])
|
116 |
-
|
117 |
-
if uploaded_file:
|
118 |
-
file_type = uploaded_file.name.split('.')[-1].lower()
|
119 |
-
index = load_file(uploaded_file, file_type)
|
120 |
-
|
121 |
-
# Watsonx Model setup with UI feedback
|
122 |
-
credentials = {
|
123 |
-
"url": watsonx_url,
|
124 |
-
"apikey": watsonx_api_key
|
125 |
-
}
|
126 |
-
parameters = {
|
127 |
-
GenParams.DECODING_METHOD: decoding_method,
|
128 |
-
GenParams.MAX_NEW_TOKENS: max_new_tokens,
|
129 |
-
GenParams.MIN_NEW_TOKENS: 1,
|
130 |
-
GenParams.TEMPERATURE: 0.7,
|
131 |
-
GenParams.TOP_K: 50,
|
132 |
-
GenParams.TOP_P: 1,
|
133 |
-
GenParams.REPETITION_PENALTY: 1.0
|
134 |
-
}
|
135 |
-
|
136 |
-
# Display setup status
|
137 |
-
status_placeholder = st.empty()
|
138 |
-
status_placeholder.markdown("**Setting up Watsonx...**")
|
139 |
-
|
140 |
-
try:
|
141 |
-
model = WatsonxLLM(Model(model_name, credentials, parameters, project_id=watsonx_project_id))
|
142 |
-
status_placeholder.markdown(f"**Model [{model_name}] ready.**")
|
143 |
-
except Exception as e:
|
144 |
-
st.error(f"Failed to initialize model: {str(e)}")
|
145 |
-
|
146 |
-
# Chat History Setup
|
147 |
-
if "messages" not in st.session_state:
|
148 |
-
st.session_state.messages = []
|
149 |
-
|
150 |
-
# Display chat messages from history on app rerun
|
151 |
-
for message in st.session_state.messages:
|
152 |
-
st.chat_message(message["role"]).markdown(message["content"])
|
153 |
-
|
154 |
-
# User Input
|
155 |
-
prompt = st.chat_input("Ask your question here", disabled=False if model else True)
|
156 |
-
|
157 |
-
# Process User Input
|
158 |
-
if prompt:
|
159 |
-
st.chat_message("user").markdown(prompt)
|
160 |
-
|
161 |
-
if index:
|
162 |
-
rag_chain = RetrievalQA.from_chain_type(
|
163 |
-
llm=model,
|
164 |
-
chain_type="stuff",
|
165 |
-
retriever=index.vectorstore.as_retriever(),
|
166 |
-
chain_type_kwargs={"prompt": prompt_template},
|
167 |
-
verbose=True
|
168 |
-
)
|
169 |
-
response_text = rag_chain.run(prompt).strip()
|
170 |
-
else:
|
171 |
-
chain = LLMChain(llm=model, prompt=prompt_template)
|
172 |
-
response_text = chain.run(context="", question=prompt).strip("<|start_header_id|>assistant<|end_header_id|>").strip("<|eot_id|>")
|
173 |
-
|
174 |
-
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
175 |
-
st.chat_message("assistant").markdown(response_text)
|
176 |
-
st.session_state.messages.append({'role': 'assistant', 'content': response_text})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
appcsvhtml.py
DELETED
@@ -1,220 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import tempfile
|
4 |
-
import pandas as pd
|
5 |
-
import json
|
6 |
-
import xml.etree.ElementTree as ET
|
7 |
-
import yaml
|
8 |
-
from bs4 import BeautifulSoup
|
9 |
-
from pptx import Presentation
|
10 |
-
from docx import Document
|
11 |
-
|
12 |
-
from langchain.document_loaders import PyPDFLoader, TextLoader
|
13 |
-
from langchain.indexes import VectorstoreIndexCreator
|
14 |
-
from langchain.chains import RetrievalQA
|
15 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
17 |
-
from langchain.chains import LLMChain
|
18 |
-
from langchain.prompts import PromptTemplate
|
19 |
-
|
20 |
-
from ibm_watson_machine_learning.foundation_models import Model
|
21 |
-
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
|
22 |
-
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
23 |
-
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
|
24 |
-
|
25 |
-
# Initialize index to None
|
26 |
-
index = None
|
27 |
-
rag_chain = None # Initialize rag_chain as None by default
|
28 |
-
|
29 |
-
# Custom loader for DOCX files
|
30 |
-
class DocxLoader:
|
31 |
-
def __init__(self, file_path):
|
32 |
-
self.file_path = file_path
|
33 |
-
|
34 |
-
def load(self):
|
35 |
-
document = Document(self.file_path)
|
36 |
-
text_content = [para.text for para in document.paragraphs]
|
37 |
-
return " ".join(text_content)
|
38 |
-
|
39 |
-
# Custom loader for PPTX files
|
40 |
-
class PptxLoader:
|
41 |
-
def __init__(self, file_path):
|
42 |
-
self.file_path = file_path
|
43 |
-
|
44 |
-
def load(self):
|
45 |
-
presentation = Presentation(self.file_path)
|
46 |
-
text_content = [shape.text for slide in presentation.slides for shape in slide.shapes if hasattr(shape, "text")]
|
47 |
-
return " ".join(text_content)
|
48 |
-
|
49 |
-
# Custom loader for additional file types
|
50 |
-
def load_csv(file_path):
|
51 |
-
df = pd.read_csv(file_path)
|
52 |
-
return df.to_string(index=False)
|
53 |
-
|
54 |
-
def load_json(file_path):
|
55 |
-
with open(file_path, 'r') as file:
|
56 |
-
data = json.load(file)
|
57 |
-
return json.dumps(data, indent=2)
|
58 |
-
|
59 |
-
def load_xml(file_path):
|
60 |
-
tree = ET.parse(file_path)
|
61 |
-
root = tree.getroot()
|
62 |
-
return ET.tostring(root, encoding="unicode")
|
63 |
-
|
64 |
-
def load_yaml(file_path):
|
65 |
-
with open(file_path, 'r') as file:
|
66 |
-
data = yaml.safe_load(file)
|
67 |
-
return yaml.dump(data)
|
68 |
-
|
69 |
-
def load_html(file_path):
|
70 |
-
with open(file_path, 'r', encoding='utf-8') as file:
|
71 |
-
soup = BeautifulSoup(file, 'html.parser')
|
72 |
-
return soup.get_text()
|
73 |
-
|
74 |
-
# Caching function to load various file types
|
75 |
-
@st.cache_resource
|
76 |
-
def load_file(file_name, file_type):
|
77 |
-
loaders = []
|
78 |
-
|
79 |
-
if file_type == "pdf":
|
80 |
-
loaders = [PyPDFLoader(file_name)]
|
81 |
-
elif file_type == "docx":
|
82 |
-
loader = DocxLoader(file_name)
|
83 |
-
text = loader.load()
|
84 |
-
elif file_type == "pptx":
|
85 |
-
loader = PptxLoader(file_name)
|
86 |
-
text = loader.load()
|
87 |
-
elif file_type == "txt":
|
88 |
-
loaders = [TextLoader(file_name)]
|
89 |
-
elif file_type == "csv":
|
90 |
-
text = load_csv(file_name)
|
91 |
-
elif file_type == "json":
|
92 |
-
text = load_json(file_name)
|
93 |
-
elif file_type == "xml":
|
94 |
-
text = load_xml(file_name)
|
95 |
-
elif file_type == "yaml":
|
96 |
-
text = load_yaml(file_name)
|
97 |
-
elif file_type == "html":
|
98 |
-
text = load_html(file_name)
|
99 |
-
else:
|
100 |
-
st.error("Unsupported file type.")
|
101 |
-
return None
|
102 |
-
|
103 |
-
# Use TextLoader for intermediate text files from custom loaders
|
104 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
|
105 |
-
temp_file.write(text.encode("utf-8"))
|
106 |
-
temp_file_path = temp_file.name
|
107 |
-
loaders = [TextLoader(temp_file_path)]
|
108 |
-
|
109 |
-
index = VectorstoreIndexCreator(
|
110 |
-
embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L12-v2"),
|
111 |
-
text_splitter=RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
|
112 |
-
).from_loaders(loaders)
|
113 |
-
return index
|
114 |
-
|
115 |
-
# Watsonx API setup
|
116 |
-
watsonx_api_key = os.getenv("WATSONX_API_KEY")
|
117 |
-
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")
|
118 |
-
|
119 |
-
if not watsonx_api_key or not watsonx_project_id:
|
120 |
-
st.error("API Key or Project ID is not set. Please set them as environment variables.")
|
121 |
-
|
122 |
-
prompt_template_br = PromptTemplate(
|
123 |
-
input_variables=["context", "question"],
|
124 |
-
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
125 |
-
I am a helpful assistant.
|
126 |
-
|
127 |
-
<|eot_id|>
|
128 |
-
{context}
|
129 |
-
<|start_header_id|>user<|end_header_id|>
|
130 |
-
{question}<|eot_id|>
|
131 |
-
"""
|
132 |
-
)
|
133 |
-
|
134 |
-
with st.sidebar:
|
135 |
-
st.title("Watsonx RAG with Multiple docs")
|
136 |
-
watsonx_model = st.selectbox("Model", ["meta-llama/llama-3-405b-instruct", "codellama/codellama-34b-instruct-hf", "ibm/granite-20b-multilingual"])
|
137 |
-
max_new_tokens = st.slider("Max output tokens", min_value=100, max_value=4000, value=600, step=100)
|
138 |
-
decoding_method = st.radio("Decoding", (DecodingMethods.GREEDY.value, DecodingMethods.SAMPLE.value))
|
139 |
-
parameters = {
|
140 |
-
GenParams.DECODING_METHOD: decoding_method,
|
141 |
-
GenParams.MAX_NEW_TOKENS: max_new_tokens,
|
142 |
-
GenParams.MIN_NEW_TOKENS: 1,
|
143 |
-
GenParams.TEMPERATURE: 0,
|
144 |
-
GenParams.TOP_K: 50,
|
145 |
-
GenParams.TOP_P: 1,
|
146 |
-
GenParams.STOP_SEQUENCES: [],
|
147 |
-
GenParams.REPETITION_PENALTY: 1
|
148 |
-
}
|
149 |
-
st.info("Upload a file to use RAG")
|
150 |
-
uploaded_file = st.file_uploader("Upload file", accept_multiple_files=False, type=["pdf", "docx", "txt", "pptx", "csv", "json", "xml", "yaml", "html"])
|
151 |
-
|
152 |
-
if uploaded_file is not None:
|
153 |
-
bytes_data = uploaded_file.read()
|
154 |
-
st.write("Filename:", uploaded_file.name)
|
155 |
-
|
156 |
-
with open(uploaded_file.name, 'wb') as f:
|
157 |
-
f.write(bytes_data)
|
158 |
-
|
159 |
-
file_type = uploaded_file.name.split('.')[-1].lower()
|
160 |
-
index = load_file(uploaded_file.name, file_type)
|
161 |
-
|
162 |
-
model_name = watsonx_model
|
163 |
-
|
164 |
-
st.info("Setting up Watsonx...")
|
165 |
-
my_credentials = {
|
166 |
-
"url": "https://us-south.ml.cloud.ibm.com",
|
167 |
-
"apikey": watsonx_api_key
|
168 |
-
}
|
169 |
-
params = parameters
|
170 |
-
project_id = watsonx_project_id
|
171 |
-
space_id = None
|
172 |
-
verify = False
|
173 |
-
model = WatsonxLLM(model=Model(model_name, my_credentials, params, project_id, space_id, verify))
|
174 |
-
|
175 |
-
if model:
|
176 |
-
st.info(f"Model {model_name} ready.")
|
177 |
-
chain = LLMChain(llm=model, prompt=prompt_template_br, verbose=True)
|
178 |
-
|
179 |
-
if chain and index is not None:
|
180 |
-
rag_chain = RetrievalQA.from_chain_type(
|
181 |
-
llm=model,
|
182 |
-
chain_type="stuff",
|
183 |
-
retriever=index.vectorstore.as_retriever(),
|
184 |
-
chain_type_kwargs={"prompt": prompt_template_br},
|
185 |
-
return_source_documents=False,
|
186 |
-
verbose=True
|
187 |
-
)
|
188 |
-
st.info("Document-based retrieval is ready.")
|
189 |
-
else:
|
190 |
-
st.warning("No document uploaded or chain setup issue.")
|
191 |
-
|
192 |
-
# Chat loop
|
193 |
-
if "messages" not in st.session_state:
|
194 |
-
st.session_state.messages = []
|
195 |
-
|
196 |
-
for message in st.session_state.messages:
|
197 |
-
st.chat_message(message["role"]).markdown(message["content"])
|
198 |
-
|
199 |
-
prompt = st.chat_input("Ask your question here", disabled=False if chain else True)
|
200 |
-
|
201 |
-
if prompt:
|
202 |
-
st.chat_message("user").markdown(prompt)
|
203 |
-
if rag_chain:
|
204 |
-
response_text = rag_chain.run(prompt).strip()
|
205 |
-
else:
|
206 |
-
response_text = chain.run(question=prompt, context="").strip()
|
207 |
-
|
208 |
-
st.session_state.messages.append({'role': 'User', 'content': prompt})
|
209 |
-
st.chat_message("assistant").markdown(response_text)
|
210 |
-
st.session_state.messages.append({'role': 'Assistant', 'content': response_text})
|
211 |
-
|
212 |
-
# requirements.txt
|
213 |
-
# Streamlit
|
214 |
-
# pandas
|
215 |
-
# beautifulsoup4
|
216 |
-
# ibm-watson-machine-learning
|
217 |
-
# python-pptx
|
218 |
-
# python-docx
|
219 |
-
# PyYAML
|
220 |
-
# xml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
appfinal.py
DELETED
@@ -1,193 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from langchain.document_loaders import PyPDFLoader, TextLoader
|
3 |
-
from langchain.indexes import VectorstoreIndexCreator
|
4 |
-
from langchain.chains import RetrievalQA
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
-
from langchain.chains import LLMChain
|
8 |
-
from langchain.prompts import PromptTemplate
|
9 |
-
import streamlit as st
|
10 |
-
import tempfile
|
11 |
-
|
12 |
-
from ibm_watson_machine_learning.foundation_models import Model
|
13 |
-
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
|
14 |
-
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
15 |
-
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
|
16 |
-
|
17 |
-
from pptx import Presentation
|
18 |
-
from docx import Document
|
19 |
-
|
20 |
-
# Initialize index to None
|
21 |
-
index = None
|
22 |
-
|
23 |
-
# Custom loader for DOCX files
|
24 |
-
class DocxLoader:
|
25 |
-
def __init__(self, file_path):
|
26 |
-
self.file_path = file_path
|
27 |
-
|
28 |
-
def load(self):
|
29 |
-
document = Document(self.file_path)
|
30 |
-
text_content = []
|
31 |
-
for para in document.paragraphs:
|
32 |
-
text_content.append(para.text)
|
33 |
-
return " ".join(text_content)
|
34 |
-
|
35 |
-
# Custom loader for PPTX files
|
36 |
-
class PptxLoader:
|
37 |
-
def __init__(self, file_path):
|
38 |
-
self.file_path = file_path
|
39 |
-
|
40 |
-
def load(self):
|
41 |
-
presentation = Presentation(self.file_path)
|
42 |
-
text_content = []
|
43 |
-
for slide in presentation.slides:
|
44 |
-
for shape in slide.shapes:
|
45 |
-
if hasattr(shape, "text"):
|
46 |
-
text_content.append(shape.text)
|
47 |
-
return " ".join(text_content)
|
48 |
-
|
49 |
-
# Caching function to load various file types
|
50 |
-
@st.cache_resource
|
51 |
-
def load_file(file_name, file_type):
|
52 |
-
loaders = []
|
53 |
-
|
54 |
-
if file_type == "pdf":
|
55 |
-
loaders = [PyPDFLoader(file_name)]
|
56 |
-
elif file_type == "docx":
|
57 |
-
loader = DocxLoader(file_name)
|
58 |
-
text = loader.load()
|
59 |
-
|
60 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
|
61 |
-
temp_file.write(text.encode("utf-8"))
|
62 |
-
temp_file_path = temp_file.name
|
63 |
-
loaders = [TextLoader(temp_file_path)]
|
64 |
-
|
65 |
-
elif file_type == "txt":
|
66 |
-
loaders = [TextLoader(file_name)]
|
67 |
-
|
68 |
-
elif file_type == "pptx":
|
69 |
-
loader = PptxLoader(file_name)
|
70 |
-
text = loader.load()
|
71 |
-
|
72 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
|
73 |
-
temp_file.write(text.encode("utf-8"))
|
74 |
-
temp_file_path = temp_file.name
|
75 |
-
loaders = [TextLoader(temp_file_path)]
|
76 |
-
|
77 |
-
else:
|
78 |
-
st.error("Unsupported file type.")
|
79 |
-
return None
|
80 |
-
|
81 |
-
index = VectorstoreIndexCreator(
|
82 |
-
embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L12-v2"),
|
83 |
-
text_splitter=RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
|
84 |
-
).from_loaders(loaders)
|
85 |
-
return index
|
86 |
-
|
87 |
-
def format_history():
|
88 |
-
return ""
|
89 |
-
|
90 |
-
# Watsonx API setup using environment variables
|
91 |
-
watsonx_api_key = os.getenv("WATSONX_API_KEY")
|
92 |
-
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")
|
93 |
-
|
94 |
-
if not watsonx_api_key or not watsonx_project_id:
|
95 |
-
st.error("API Key or Project ID is not set. Please set them as environment variables.")
|
96 |
-
|
97 |
-
prompt_template_br = PromptTemplate(
|
98 |
-
input_variables=["context", "question"],
|
99 |
-
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
100 |
-
I am a helpful assistant.
|
101 |
-
|
102 |
-
<|eot_id|>
|
103 |
-
{context}
|
104 |
-
<|start_header_id|>user<|end_header_id|>
|
105 |
-
{question}<|eot_id|>
|
106 |
-
"""
|
107 |
-
)
|
108 |
-
|
109 |
-
with st.sidebar:
|
110 |
-
st.title("Watsonx RAG with Multiple docs")
|
111 |
-
watsonx_model = st.selectbox("Model", ["meta-llama/llama-3-405b-instruct", "codellama/codellama-34b-instruct-hf", "ibm/granite-20b-multilingual"])
|
112 |
-
max_new_tokens = st.slider("Max output tokens", min_value=100, max_value=4000, value=600, step=100)
|
113 |
-
decoding_method = st.radio("Decoding", (DecodingMethods.GREEDY.value, DecodingMethods.SAMPLE.value))
|
114 |
-
parameters = {
|
115 |
-
GenParams.DECODING_METHOD: decoding_method,
|
116 |
-
GenParams.MAX_NEW_TOKENS: max_new_tokens,
|
117 |
-
GenParams.MIN_NEW_TOKENS: 1,
|
118 |
-
GenParams.TEMPERATURE: 0,
|
119 |
-
GenParams.TOP_K: 50,
|
120 |
-
GenParams.TOP_P: 1,
|
121 |
-
GenParams.STOP_SEQUENCES: [],
|
122 |
-
GenParams.REPETITION_PENALTY: 1
|
123 |
-
}
|
124 |
-
st.info("Upload a PDF, DOCX, TXT, or PPTX file to use RAG")
|
125 |
-
uploaded_file = st.file_uploader("Upload file", accept_multiple_files=False, type=["pdf", "docx", "txt", "pptx"])
|
126 |
-
if uploaded_file is not None:
|
127 |
-
bytes_data = uploaded_file.read()
|
128 |
-
st.write("Filename:", uploaded_file.name)
|
129 |
-
|
130 |
-
with open(uploaded_file.name, 'wb') as f:
|
131 |
-
f.write(bytes_data)
|
132 |
-
|
133 |
-
file_type = uploaded_file.name.split('.')[-1].lower()
|
134 |
-
index = load_file(uploaded_file.name, file_type)
|
135 |
-
|
136 |
-
model_name = watsonx_model
|
137 |
-
|
138 |
-
def clear_messages():
|
139 |
-
st.session_state.messages = []
|
140 |
-
|
141 |
-
st.button('Clear messages', on_click=clear_messages)
|
142 |
-
|
143 |
-
st.info("Setting up Watsonx...")
|
144 |
-
|
145 |
-
my_credentials = {
|
146 |
-
"url": "https://us-south.ml.cloud.ibm.com",
|
147 |
-
"apikey": watsonx_api_key
|
148 |
-
}
|
149 |
-
params = parameters
|
150 |
-
project_id = watsonx_project_id
|
151 |
-
space_id = None
|
152 |
-
verify = False
|
153 |
-
model = WatsonxLLM(model=Model(model_name, my_credentials, params, project_id, space_id, verify))
|
154 |
-
|
155 |
-
if model:
|
156 |
-
st.info(f"Model {model_name} ready.")
|
157 |
-
chain = LLMChain(llm=model, prompt=prompt_template_br, verbose=True)
|
158 |
-
|
159 |
-
if chain:
|
160 |
-
st.info("Chat ready.")
|
161 |
-
if index:
|
162 |
-
rag_chain = RetrievalQA.from_chain_type(
|
163 |
-
llm=model,
|
164 |
-
chain_type="stuff",
|
165 |
-
retriever=index.vectorstore.as_retriever(),
|
166 |
-
chain_type_kwargs={"prompt": prompt_template_br},
|
167 |
-
return_source_documents=False,
|
168 |
-
verbose=True
|
169 |
-
)
|
170 |
-
st.info("Chat with document ready.")
|
171 |
-
|
172 |
-
if "messages" not in st.session_state:
|
173 |
-
st.session_state.messages = []
|
174 |
-
|
175 |
-
for message in st.session_state.messages:
|
176 |
-
st.chat_message(message["role"]).markdown(message["content"])
|
177 |
-
|
178 |
-
prompt = st.chat_input("Ask your question here", disabled=False if chain else True)
|
179 |
-
|
180 |
-
if prompt:
|
181 |
-
st.chat_message("user").markdown(prompt)
|
182 |
-
|
183 |
-
response_text = None
|
184 |
-
if rag_chain:
|
185 |
-
response_text = rag_chain.run(prompt).strip()
|
186 |
-
|
187 |
-
if not response_text:
|
188 |
-
response = chain.run(question=prompt, context=format_history())
|
189 |
-
response_text = response.strip("<|start_header_id|>assistant<|end_header_id|>").strip("<|eot_id|>")
|
190 |
-
|
191 |
-
st.session_state.messages.append({'role': 'User', 'content': prompt })
|
192 |
-
st.chat_message("assistant").markdown(response_text)
|
193 |
-
st.session_state.messages.append({'role': 'Assistant', 'content': response_text })
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
appfinalokokok.py
DELETED
@@ -1,199 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import tempfile
|
4 |
-
from pptx import Presentation
|
5 |
-
from docx import Document
|
6 |
-
|
7 |
-
from langchain.document_loaders import PyPDFLoader, TextLoader
|
8 |
-
from langchain.indexes import VectorstoreIndexCreator
|
9 |
-
from langchain.chains import RetrievalQA
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
-
from langchain.chains import LLMChain
|
13 |
-
from langchain.prompts import PromptTemplate
|
14 |
-
|
15 |
-
from ibm_watson_machine_learning.foundation_models import Model
|
16 |
-
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
|
17 |
-
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
18 |
-
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
|
19 |
-
|
20 |
-
# Initialize index to None
|
21 |
-
index = None
|
22 |
-
rag_chain = None # Initialize rag_chain as None by default
|
23 |
-
|
24 |
-
# Custom loader for DOCX files
|
25 |
-
class DocxLoader:
|
26 |
-
def __init__(self, file_path):
|
27 |
-
self.file_path = file_path
|
28 |
-
|
29 |
-
def load(self):
|
30 |
-
document = Document(self.file_path)
|
31 |
-
text_content = []
|
32 |
-
for para in document.paragraphs:
|
33 |
-
text_content.append(para.text)
|
34 |
-
return " ".join(text_content)
|
35 |
-
|
36 |
-
# Custom loader for PPTX files
|
37 |
-
class PptxLoader:
|
38 |
-
def __init__(self, file_path):
|
39 |
-
self.file_path = file_path
|
40 |
-
|
41 |
-
def load(self):
|
42 |
-
presentation = Presentation(self.file_path)
|
43 |
-
text_content = []
|
44 |
-
for slide in presentation.slides:
|
45 |
-
for shape in slide.shapes:
|
46 |
-
if hasattr(shape, "text"):
|
47 |
-
text_content.append(shape.text)
|
48 |
-
return " ".join(text_content)
|
49 |
-
|
50 |
-
# Caching function to load various file types
|
51 |
-
@st.cache_resource
|
52 |
-
def load_file(file_name, file_type):
|
53 |
-
loaders = []
|
54 |
-
|
55 |
-
if file_type == "pdf":
|
56 |
-
loaders = [PyPDFLoader(file_name)]
|
57 |
-
elif file_type == "docx":
|
58 |
-
loader = DocxLoader(file_name)
|
59 |
-
text = loader.load()
|
60 |
-
|
61 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
|
62 |
-
temp_file.write(text.encode("utf-8"))
|
63 |
-
temp_file_path = temp_file.name
|
64 |
-
loaders = [TextLoader(temp_file_path)]
|
65 |
-
|
66 |
-
elif file_type == "txt":
|
67 |
-
loaders = [TextLoader(file_name)]
|
68 |
-
|
69 |
-
elif file_type == "pptx":
|
70 |
-
loader = PptxLoader(file_name)
|
71 |
-
text = loader.load()
|
72 |
-
|
73 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
|
74 |
-
temp_file.write(text.encode("utf-8"))
|
75 |
-
temp_file_path = temp_file.name
|
76 |
-
loaders = [TextLoader(temp_file_path)]
|
77 |
-
|
78 |
-
else:
|
79 |
-
st.error("Unsupported file type.")
|
80 |
-
return None
|
81 |
-
|
82 |
-
index = VectorstoreIndexCreator(
|
83 |
-
embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L12-v2"),
|
84 |
-
text_splitter=RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
|
85 |
-
).from_loaders(loaders)
|
86 |
-
return index
|
87 |
-
|
88 |
-
def format_history():
|
89 |
-
return ""
|
90 |
-
|
91 |
-
# Watsonx API setup using environment variables
|
92 |
-
watsonx_api_key = os.getenv("WATSONX_API_KEY")
|
93 |
-
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")
|
94 |
-
|
95 |
-
if not watsonx_api_key or not watsonx_project_id:
|
96 |
-
st.error("API Key or Project ID is not set. Please set them as environment variables.")
|
97 |
-
|
98 |
-
prompt_template_br = PromptTemplate(
|
99 |
-
input_variables=["context", "question"],
|
100 |
-
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
101 |
-
I am a helpful assistant.
|
102 |
-
|
103 |
-
<|eot_id|>
|
104 |
-
{context}
|
105 |
-
<|start_header_id|>user<|end_header_id|>
|
106 |
-
{question}<|eot_id|>
|
107 |
-
"""
|
108 |
-
)
|
109 |
-
|
110 |
-
with st.sidebar:
|
111 |
-
st.title("Watsonx RAG with Multiple docs")
|
112 |
-
watsonx_model = st.selectbox("Model", ["meta-llama/llama-3-405b-instruct", "codellama/codellama-34b-instruct-hf", "ibm/granite-20b-multilingual"])
|
113 |
-
max_new_tokens = st.slider("Max output tokens", min_value=100, max_value=4000, value=600, step=100)
|
114 |
-
decoding_method = st.radio("Decoding", (DecodingMethods.GREEDY.value, DecodingMethods.SAMPLE.value))
|
115 |
-
parameters = {
|
116 |
-
GenParams.DECODING_METHOD: decoding_method,
|
117 |
-
GenParams.MAX_NEW_TOKENS: max_new_tokens,
|
118 |
-
GenParams.MIN_NEW_TOKENS: 1,
|
119 |
-
GenParams.TEMPERATURE: 0,
|
120 |
-
GenParams.TOP_K: 50,
|
121 |
-
GenParams.TOP_P: 1,
|
122 |
-
GenParams.STOP_SEQUENCES: [],
|
123 |
-
GenParams.REPETITION_PENALTY: 1
|
124 |
-
}
|
125 |
-
st.info("Upload a PDF, DOCX, TXT, or PPTX file to use RAG")
|
126 |
-
uploaded_file = st.file_uploader("Upload file", accept_multiple_files=False, type=["pdf", "docx", "txt", "pptx"])
|
127 |
-
if uploaded_file is not None:
|
128 |
-
bytes_data = uploaded_file.read()
|
129 |
-
st.write("Filename:", uploaded_file.name)
|
130 |
-
|
131 |
-
with open(uploaded_file.name, 'wb') as f:
|
132 |
-
f.write(bytes_data)
|
133 |
-
|
134 |
-
file_type = uploaded_file.name.split('.')[-1].lower()
|
135 |
-
index = load_file(uploaded_file.name, file_type)
|
136 |
-
|
137 |
-
model_name = watsonx_model
|
138 |
-
|
139 |
-
def clear_messages():
|
140 |
-
st.session_state.messages = []
|
141 |
-
|
142 |
-
st.button('Clear messages', on_click=clear_messages)
|
143 |
-
|
144 |
-
st.info("Setting up Watsonx...")
|
145 |
-
|
146 |
-
my_credentials = {
|
147 |
-
"url": "https://us-south.ml.cloud.ibm.com",
|
148 |
-
"apikey": watsonx_api_key
|
149 |
-
}
|
150 |
-
params = parameters
|
151 |
-
project_id = watsonx_project_id
|
152 |
-
space_id = None
|
153 |
-
verify = False
|
154 |
-
model = WatsonxLLM(model=Model(model_name, my_credentials, params, project_id, space_id, verify))
|
155 |
-
|
156 |
-
if model:
|
157 |
-
st.info(f"Model {model_name} ready.")
|
158 |
-
chain = LLMChain(llm=model, prompt=prompt_template_br, verbose=True)
|
159 |
-
|
160 |
-
if chain:
|
161 |
-
st.info("Chat ready.")
|
162 |
-
|
163 |
-
# Only create rag_chain if index is successfully created
|
164 |
-
if index is not None:
|
165 |
-
rag_chain = RetrievalQA.from_chain_type(
|
166 |
-
llm=model,
|
167 |
-
chain_type="stuff",
|
168 |
-
retriever=index.vectorstore.as_retriever(),
|
169 |
-
chain_type_kwargs={"prompt": prompt_template_br},
|
170 |
-
return_source_documents=False,
|
171 |
-
verbose=True
|
172 |
-
)
|
173 |
-
st.info("Document-based retrieval is ready.")
|
174 |
-
else:
|
175 |
-
st.warning("No document uploaded. Answering common queries without retrieval.")
|
176 |
-
|
177 |
-
# Chat loop for handling queries
|
178 |
-
if "messages" not in st.session_state:
|
179 |
-
st.session_state.messages = []
|
180 |
-
|
181 |
-
for message in st.session_state.messages:
|
182 |
-
st.chat_message(message["role"]).markdown(message["content"])
|
183 |
-
|
184 |
-
prompt = st.chat_input("Ask your question here", disabled=False if chain else True)
|
185 |
-
|
186 |
-
if prompt:
|
187 |
-
st.chat_message("user").markdown(prompt)
|
188 |
-
|
189 |
-
# Answer based on availability of rag_chain or chain
|
190 |
-
if rag_chain:
|
191 |
-
response_text = rag_chain.run(prompt).strip()
|
192 |
-
else:
|
193 |
-
# Use general model-based response if rag_chain is not available
|
194 |
-
response_text = chain.run(question=prompt, context=format_history()).strip("<|start_header_id|>assistant<|end_header_id|>").strip("<|eot_id|>")
|
195 |
-
|
196 |
-
# Store and display conversation
|
197 |
-
st.session_state.messages.append({'role': 'User', 'content': prompt})
|
198 |
-
st.chat_message("assistant").markdown(response_text)
|
199 |
-
st.session_state.messages.append({'role': 'Assistant', 'content': response_text})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample env.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WATSONX_API_KEY=<your_watsonx_api_key>
|
2 |
+
WATSONX_PROJECT_ID=<your_watsonx_project_id>
|