File size: 23,025 Bytes
8a0e9b6
71f5363
7d4ee71
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71f5363
 
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
8a0e9b6
 
 
 
 
 
7d4ee71
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
 
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
 
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
 
 
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
 
8a0e9b6
 
 
 
7d4ee71
 
8a0e9b6
 
 
7d4ee71
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
8a0e9b6
 
 
 
 
7d4ee71
8a0e9b6
 
 
 
 
7d4ee71
8a0e9b6
 
 
7d4ee71
8a0e9b6
 
 
 
7d4ee71
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
 
8a0e9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
import os
import gradio as gr
import spaces
from infer_rvc_python import BaseLoader
import random
import logging
import time
import soundfile as sf
from infer_rvc_python.main import download_manager, load_hu_bert, Config
import zipfile
import edge_tts
import asyncio
import librosa
import traceback
import soundfile as sf
from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
from pedalboard.io import AudioFile
from pydub import AudioSegment
import noisereduce as nr
import numpy as np
import urllib.request
import shutil
import threading
import argparse
import sys

parser = argparse.ArgumentParser(description="Run the app with optional sharing")
parser.add_argument(
    '--share',
    action='store_true',
    help='Enable sharing mode'
)
parser.add_argument(
    '--theme',
    type=str,
    default="aliabid94/new-theme",
    help='Set the theme (default: aliabid94/new-theme)'
)
args = parser.parse_args()

IS_COLAB = True if ('google.colab' in sys.modules or args.share) else False
IS_ZERO_GPU = os.getenv("SPACES_ZERO_GPU")

logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)

converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
converter.hu_bert_model = load_hu_bert(Config(only_cpu=False), converter.hubert_path)

# مدل پیش‌فرض (اختیاری)
test_model = "https://huggingface.co/sail-rvc/Aldeano_Minecraft__RVC_V2_-_500_Epochs_/resolve/main/model.pth?download=true,   https://huggingface.co/sail-rvc/Aldeano_Minecraft__RVC_V2_-_500_Epochs_/resolve/main/model.index?download=true"
test_names = ["model.pth", "model.index"]

for url, filename in zip(test_model.split(", "), test_names):
    try:
        download_manager(
            url=url,
            path=".",
            extension="",
            overwrite=False,
            progress=True,
        )
        if not os.path.isfile(filename):
            raise FileNotFoundError
    except Exception:
        with open(filename, "wb") as f:
            pass

title = "<center><strong><font size='7'>RVC⚡ZERO - High Quality Voice Conversion</font></strong></center>"
description = "Upload your own model (.pth) and audio files for voice conversion." if IS_ZERO_GPU else ""
RESOURCES = """
📌 <strong>Tips for Best Quality:</strong>
- Use models trained for 200+ epochs.
- Always upload .index file & set Index Influence to 0.9.
- Choose "rmvpe+" as Pitch Algorithm.
- Output format: WAV (lossless).
- Disable noise reduction unless necessary.
- Keep Resample SR = 0 (automatic).
"""
theme = args.theme
delete_cache_time = (3200, 3200) if IS_ZERO_GPU else (86400, 86400)

PITCH_ALGO_OPT = [
    "pm",
    "harvest",
    "crepe",
    "rmvpe",
    "rmvpe+",
]


async def get_voices_list(proxy=None):
    """Print all available voices."""
    from edge_tts import list_voices
    voices = await list_voices(proxy=proxy)
    voices = sorted(voices, key=lambda voice: voice.get("ShortName", ""))

    table = [
        {
            "ShortName": voice.get("ShortName", "Unknown"),
            "Gender": voice.get("Gender", "Unknown"),
            "ContentCategories": ", ".join(voice.get("VoiceTag", {}).get("ContentCategories", [])),
            "VoicePersonalities": ", ".join(voice.get("VoiceTag", {}).get("VoicePersonalities", [])),
            "FriendlyName": voice.get("FriendlyName", voice.get("Name", "Unknown Voice")),
        }
        for voice in voices
    ]

    return table


def find_files(directory):
    file_paths = []
    for filename in os.listdir(directory):
        if filename.endswith('.pth') or filename.endswith('.zip') or filename.endswith('.index'):
            file_paths.append(os.path.join(directory, filename))
    return file_paths


def unzip_in_folder(my_zip, my_dir):
    with zipfile.ZipFile(my_zip) as zip:
        for zip_info in zip.infolist():
            if zip_info.is_dir():
                continue
            zip_info.filename = os.path.basename(zip_info.filename)
            zip.extract(zip_info, my_dir)


def find_my_model(a_, b_):
    if a_ is None or a_.endswith(".pth"):
        return a_, b_

    txt_files = []
    for base_file in [a_, b_]:
        if base_file is not None and base_file.endswith(".txt"):
            txt_files.append(base_file)

    directory = os.path.dirname(a_)

    for txt in txt_files:
        with open(txt, 'r') as file:
            first_line = file.readline()

        download_manager(
            url=first_line.strip(),
            path=directory,
            extension="",
        )

    for f in find_files(directory):
        if f.endswith(".zip"):
            unzip_in_folder(f, directory)

    model = None
    index = None
    end_files = find_files(directory)

    for ff in end_files:
        if ff.endswith(".pth"):
            model = os.path.join(directory, ff)
            gr.Info(f"Model found: {ff}")
        if ff.endswith(".index"):
            index = os.path.join(directory, ff)
            gr.Info(f"Index found: {ff}")

    if not model:
        gr.Error(f"Model not found in: {end_files}")

    if not index:
        gr.Warning("Index not found")

    return model, index


def ensure_valid_file(url):
    if "huggingface" not in url:
        raise ValueError("Only downloads from Hugging Face are allowed")

    try:
        request = urllib.request.Request(url, method="HEAD")
        with urllib.request.urlopen(request) as response:
            content_length = response.headers.get("Content-Length")

        if content_length is None:
            raise ValueError("No Content-Length header found")

        file_size = int(content_length)
        if file_size > 900000000 and IS_ZERO_GPU:
            raise ValueError("The file is too large. Max allowed is 900 MB.")

        return file_size

    except Exception as e:
        raise e


def clear_files(directory):
    time.sleep(15)
    print(f"Clearing files: {directory}.")
    shutil.rmtree(directory)


# ✅ تابع کاملاً اصلاح شده — بدون خطای سینتکسی
def get_my_model(url_data, progress=gr.Progress(track_tqdm=True)):
    if not url_data:  # ⬅️ اصلاح شده: url_data + :
        return None, None

    if "," in url_data:  # ⬅️ اصلاح شده: url_data + :
        a_, b_ = url_data.split(",")
        a_, b_ = a_.strip().replace("/blob/", "/resolve/"), b_.strip().replace("/blob/", "/resolve/")
    else:
        a_, b_ = url_data.strip().replace("/blob/", "/resolve/"), None

    out_dir = "downloads"
    folder_download = str(random.randint(1000, 9999))
    directory = os.path.join(out_dir, folder_download)
    os.makedirs(directory, exist_ok=True)

    try:
        valid_url = [a_] if not b_ else [a_, b_]
        for link in valid_url:
            ensure_valid_file(link)
            download_manager(
                url=link,
                path=directory,
                extension="",
            )

        for f in find_files(directory):
            if f.endswith(".zip"):
                unzip_in_folder(f, directory)

        model = None
        index = None
        end_files = find_files(directory)

        for ff in end_files:
            if ff.endswith(".pth"):
                model = ff
                gr.Info(f"Model found: {ff}")
            if ff.endswith(".index"):
                index = ff
                gr.Info(f"Index found: {ff}")

        if not model:
            raise ValueError(f"Model not found in: {end_files}")

        if not index:
            gr.Warning("Index not found")
        else:
            index = os.path.abspath(index)

        return os.path.abspath(model), index

    except Exception as e:
        raise e
    finally:
        t = threading.Thread(target=clear_files, args=(directory,))
        t.start()


def add_audio_effects(audio_list, type_output):
    print("Audio effects")

    result = []
    for audio_path in audio_list:
        try:
            output_path = f'{os.path.splitext(audio_path)[0]}_effects.{type_output}'

            board = Pedalboard(
                [
                    HighpassFilter(),
                    Compressor(ratio=4, threshold_db=-15),
                    Reverb(room_size=0.10, dry_level=0.8, wet_level=0.2, damping=0.7)
                 ]
            )

            temp_wav = f'{os.path.splitext(audio_path)[0]}_temp.wav'

            with AudioFile(audio_path) as f:
                with AudioFile(temp_wav, 'w', f.samplerate, f.num_channels) as o:
                    while f.tell() < f.frames:
                        chunk = f.read(int(f.samplerate))
                        effected = board(chunk, f.samplerate, reset=False)
                        o.write(effected)

            audio_seg = AudioSegment.from_file(temp_wav, format=type_output)
            audio_seg.export(output_path, format=type_output, bitrate=("320k" if type_output == "mp3" else None))

            os.remove(temp_wav)

            result.append(output_path)
        except Exception as e:
            traceback.print_exc()
            print(f"Error audio effects: {str(e)}")
            result.append(audio_path)

    return result


def apply_noisereduce(audio_list, type_output):
    print("Noise reduce")

    result = []
    for audio_path in audio_list:
        out_path = f"{os.path.splitext(audio_path)[0]}_noisereduce.{type_output}"

        try:
            audio = AudioSegment.from_file(audio_path)
            samples = np.array(audio.get_array_of_samples())
            reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6)

            reduced_audio = AudioSegment(
                reduced_noise.tobytes(), 
                frame_rate=audio.frame_rate, 
                sample_width=audio.sample_width,
                channels=audio.channels
            )

            reduced_audio.export(out_path, format=type_output, bitrate=("320k" if type_output == "mp3" else None))
            result.append(out_path)

        except Exception as e:
            traceback.print_exc()
            print(f"Error noisereduce: {str(e)}")
            result.append(audio_path)

    return result


@spaces.GPU()
def convert_now(audio_files, random_tag, converter, type_output, steps):
    for step in range(steps):
        audio_files = converter(
            audio_files,
            random_tag,
            overwrite=False,
            parallel_workers=(2 if IS_COLAB else 8),
            type_output=type_output,
        )

    return audio_files


def run(
    audio_files,
    file_m,
    pitch_alg,
    pitch_lvl,
    file_index,
    index_inf,
    r_m_f,
    e_r,
    c_b_p,
    active_noise_reduce,
    audio_effects,
    type_output,
    steps,
):
    if not audio_files:
        raise ValueError("Please upload audio files")

    if isinstance(audio_files, str):
        audio_files = [audio_files]

    try:
        duration_base = librosa.get_duration(filename=audio_files[0])
        print("Duration:", duration_base)
    except Exception as e:
        print(e)

    if file_m is not None and file_m.endswith(".txt"):
        file_m, file_index = find_my_model(file_m, file_index)
        print(file_m, file_index)

    random_tag = "USER_"+str(random.randint(10000000, 99999999))

    converter.apply_conf(
        tag=random_tag,
        file_model=file_m,
        pitch_algo=pitch_alg,
        pitch_lvl=pitch_lvl,
        file_index=file_index,
        index_influence=index_inf,
        respiration_median_filtering=r_m_f,
        envelope_ratio=e_r,
        consonant_breath_protection=c_b_p,
        resample_sr=0,  # ⬅️ مهم: بدون ری‌سمپل برای کیفیت بالاتر
    )
    time.sleep(0.1)

    result = convert_now(audio_files, random_tag, converter, type_output, steps)

    if active_noise_reduce:
        result = apply_noisereduce(result, type_output)

    if audio_effects:
        result = add_audio_effects(result, type_output)

    return result


def audio_conf():
    return gr.File(
        label="Upload Audio Files (wav, mp3, ogg, flac)",
        file_count="multiple",
        type="filepath",
        file_types=[".wav", ".mp3", ".ogg", ".flac", ".m4a"],
        container=True,
    )


def model_conf():
    return gr.File(
        label="Upload Model File (.pth)",
        type="filepath",
        file_types=[".pth"],
        height=130,
    )


def pitch_algo_conf():
    return gr.Dropdown(
        PITCH_ALGO_OPT,
        value="rmvpe+",  # ⬅️ بهترین الگوریتم برای کیفیت
        label="Pitch Algorithm (rmvpe+ recommended)",
        visible=True,
        interactive=True,
    )


def pitch_lvl_conf():
    return gr.Slider(
        label="Pitch Shift (نازک/کلفت کردن صدا)",
        minimum=-24,
        maximum=24,
        step=1,
        value=0,
        visible=True,
        interactive=True,
        info="🔹 مثبت = نازک‌تر (مثل کارتون) | منفی = کلفت‌تر (مثل غول)"
    )


def index_conf():
    return gr.File(
        label="Upload Index File (.index) - Optional (Recommended for Quality!)",
        type="filepath",
        file_types=[".index"],
        height=130,
    )


def index_inf_conf():
    return gr.Slider(
        minimum=0,
        maximum=1,
        label="Index Influence (Higher = More Detail)",
        value=0.9,  # ⬅️ بهینه برای کیفیت
    )


def respiration_filter_conf():
    return gr.Slider(
        minimum=0,
        maximum=7,
        label="Respiration Median Filtering",
        value=3,
        step=1,
        interactive=True,
    )


def envelope_ratio_conf():
    return gr.Slider(
        minimum=0,
        maximum=1,
        label="Envelope Ratio (Controls Dynamics)",
        value=0.5,  # ⬅️ بهینه برای طبیعی‌بودن
        interactive=True,
    )


def consonant_protec_conf():
    return gr.Slider(
        minimum=0,
        maximum=0.5,
        label="Consonant Breath Protection",
        value=0.3,  # ⬅️ کاهش برای جلوگیری از مصنوعی شدن
        interactive=True,
    )


def button_conf():
    return gr.Button(
        "Convert Voice (High Quality Mode)",
        variant="primary",
        size="lg",
    )


def output_conf():
    return gr.File(
        label="Converted Audio (High Quality Output)",
        file_count="multiple",
        interactive=False,
    )


def active_tts_conf():
    return gr.Checkbox(
        False,
        label="Use Text-to-Speech",
        container=False,
    )


def tts_voice_conf():
    return gr.Dropdown(
        label="TTS Voice",
        choices=[],  # Will be populated later
        visible=False,
        value=None,
    )


def tts_text_conf():
    return gr.Textbox(
        value="",
        placeholder="Enter text to convert to speech...",
        label="Text",
        visible=False,
        lines=3,
    )


def tts_button_conf():
    return gr.Button(
        "Generate Speech",
        variant="secondary",
        visible=False,
    )


def tts_play_conf():
    return gr.Checkbox(
        False,
        label="Auto-play generated audio",
        container=False,
        visible=False,
    )


def sound_gui():
    return gr.Audio(
        value=None,
        type="filepath",
        autoplay=True,
        visible=True,
        interactive=False,
        elem_id="audio_tts",
    )


def steps_conf():
    return gr.Slider(
        minimum=1,
        maximum=3,
        label="Conversion Steps (1 recommended for speed & quality)",
        value=1,
        step=1,
        interactive=True,
    )


def format_output_gui():
    return gr.Dropdown(
        label="Output Format (WAV for Best Quality)",
        choices=["wav", "flac", "mp3"],
        value="wav",  # ⬅️ فرمت بدون فشرده‌سازی
    )


def denoise_conf():
    return gr.Checkbox(
        False,  # ⬅️ پیش‌فرض غیرفعال — فقط در صورت نیاز فعال شود
        label="Apply Noise Reduction (May reduce quality)",
        container=False,
        visible=True,
    )


def effects_conf():
    return gr.Checkbox(
        False,  # ⬅️ پیش‌فرض غیرفعال
        label="Apply Audio Effects (Reverb) (May reduce clarity)",
        container=False,
        visible=True,
    )


def infer_tts_audio(tts_voice, tts_text, play_tts):
    out_dir = "output"
    folder_tts = "USER_"+str(random.randint(10000, 99999))

    os.makedirs(out_dir, exist_ok=True)
    os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True)
    out_path = os.path.join(out_dir, folder_tts, "tts.mp3")

    # Extract ShortName from combined value (e.g., "en-US-EmmaMultilingualNeural-Female")
    if tts_voice:
        short_name = "-".join(tts_voice.split('-')[:-1])
    else:
        short_name = "en-US-EmmaMultilingualNeural"

    asyncio.run(edge_tts.Communicate(tts_text, short_name).save(out_path))
    if play_tts:
        return [out_path], out_path
    return [out_path], None


def show_components_tts(value_active):
    return gr.update(
        visible=value_active
    ), gr.update(
        visible=value_active
    ), gr.update(
        visible=value_active
    ), gr.update(
        visible=value_active
    )


def down_active_conf():
    return gr.Checkbox(
        False,
        label="Download from URL",
        container=False,
    )


def down_url_conf():
    return gr.Textbox(
        value="",
        placeholder="Hugging Face model URL...",
        label="Model URL",
        visible=False,
        lines=1,
    )


def down_button_conf():
    return gr.Button(
        "Download Model",
        variant="secondary",
        visible=False,
    )


def show_components_down(value_active):
    return gr.update(
        visible=value_active
    ), gr.update(
        visible=value_active
    ), gr.update(
        visible=value_active
    )

CSS = """
#audio_tts {
  visibility: hidden;
  height: 0px;
  width: 0px;
  max-width: 0px;
  max-height: 0px;
}
"""

def get_gui(theme):
    with gr.Blocks(theme=theme, css=CSS, fill_width=True, fill_height=False, delete_cache=delete_cache_time) as app:
        gr.Markdown(title)
        gr.Markdown(description)

        with gr.Tab("Voice Conversion"):
            # بخش آپلود فایل‌های صوتی
            gr.Markdown("### 📤 Upload Audio Files")
            aud = audio_conf()
            
            # بخش TTS
            active_tts = active_tts_conf()
            with gr.Row(visible=False) as tts_row:
                with gr.Column(scale=1):
                    tts_text = tts_text_conf()
                with gr.Column(scale=2):
                    with gr.Row():
                        with gr.Column():
                            with gr.Row():
                                tts_voice = tts_voice_conf()
                                tts_active_play = tts_play_conf()
                    tts_button = tts_button_conf()
                    tts_play = sound_gui()

            active_tts.change(
                fn=show_components_tts,
                inputs=[active_tts],
                outputs=[tts_voice, tts_text, tts_button, tts_active_play],
            )

            tts_button.click(
                fn=infer_tts_audio,
                inputs=[tts_voice, tts_text, tts_active_play],
                outputs=[aud, tts_play],
            )

            # بخش مدل
            gr.Markdown("### 🎯 Model Selection")
            
            with gr.Row():
                with gr.Column(scale=1):
                    model = model_conf()
                    gr.Markdown("*Upload your .pth model file*")
                with gr.Column(scale=1):
                    indx = index_conf()
                    gr.Markdown("*Upload .index file for best quality!*")

            # بخش دانلود از URL
            down_active_gui = down_active_conf()
            down_info = gr.Markdown(
                f"Download models from Hugging Face URLs",
                visible=False
            )
            with gr.Row(visible=False) as url_row:
                with gr.Column(scale=3):
                    down_url_gui = down_url_conf()
                with gr.Column(scale=1):
                    down_button_gui = down_button_conf()

            down_active_gui.change(
                show_components_down,
                [down_active_gui],
                [down_info, down_url_gui, down_button_gui]
            )

            down_button_gui.click(
                get_my_model,
                [down_url_gui],
                [model, indx]
            )

            # تنظیمات پیشرفته
            with gr.Accordion(label="⚙️ Advanced Settings (Optimized for Quality)", open=True):
                with gr.Row():
                    algo = pitch_algo_conf()
                    algo_lvl = pitch_lvl_conf()
                
                with gr.Row():
                    indx_inf = index_inf_conf()
                    steps_gui = steps_conf()
                
                with gr.Row():
                    res_fc = respiration_filter_conf()
                    envel_r = envelope_ratio_conf()
                    const = consonant_protec_conf()
                
                with gr.Row():
                    format_out = format_output_gui()
                    denoise_gui = denoise_conf()
                    effects_gui = effects_conf()

            # دکمه تبدیل
            button_base = button_conf()
            
            # نتیجه
            gr.Markdown("### 🎵 Output (High Quality)")
            output_base = output_conf()

            button_base.click(
                run,
                inputs=[
                    aud,
                    model,
                    algo,
                    algo_lvl,
                    indx,
                    indx_inf,
                    res_fc,
                    envel_r,
                    const,
                    denoise_gui,
                    effects_gui,
                    format_out,
                    steps_gui,
                ],
                outputs=[output_base],
            )

        gr.Markdown(RESOURCES)

    return app


if __name__ == "__main__":
    # Get voice list safely
    tts_voice_list = asyncio.new_event_loop().run_until_complete(get_voices_list(proxy=None))
    
    # Build voice dropdown options with safe .get() access
    voices = sorted([
        (
            " - ".join(
                reversed(
                    voice.get("FriendlyName", voice.get("Name", "Unknown Voice")).split("-")
                )
            ).replace("Microsoft ", "").replace("Online (Natural)", f"({voice.get('Gender', 'Unknown')})").strip(),
            f"{voice.get('ShortName', 'Unknown')}-{voice.get('Gender', 'Unknown')}"
        )
        for voice in tts_voice_list
    ])

    # Initialize GUI
    app = get_gui(theme)
    app.queue(default_concurrency_limit=40)

    # Launch app
    app.launch(
        max_threads=40,
        share=IS_COLAB,
        show_error=True,
        quiet=False,
        debug=IS_COLAB,
        ssr_mode=False,
    )