import os os.system('pip install dashscope') import gradio as gr from http import HTTPStatus import dashscope from dashscope import Generation from dashscope.api_entities.dashscope_response import Role from typing import List, Optional, Tuple, Dict from urllib.error import HTTPError default_system = 'You are a helpful assistant.' YOUR_API_TOKEN = os.getenv('YOUR_API_TOKEN') dashscope.api_key = YOUR_API_TOKEN History = List[Tuple[str, str]] Messages = List[Dict[str, str]] def clear_session() -> History: return '', [] def modify_system_session(system: str) -> str: if system is None or len(system) == 0: system = default_system return system, system, [] def history_to_messages(history: History, system: str) -> Messages: messages = [{'role': Role.SYSTEM, 'content': system}] for h in history: messages.append({'role': Role.USER, 'content': h[0]}) messages.append({'role': Role.ASSISTANT, 'content': h[1]}) return messages def messages_to_history(messages: Messages) -> Tuple[str, History]: assert messages[0]['role'] == Role.SYSTEM system = messages[0]['content'] history = [] for q, r in zip(messages[1::2], messages[2::2]): history.append([q['content'], r['content']]) return system, history def model_chat(query: Optional[str], history: Optional[History], system: str ) -> Tuple[str, str, History]: if query is None: query = '' if history is None: history = [] messages = history_to_messages(history, system) messages.append({'role': Role.USER, 'content': query}) gen = Generation.call( model = "qwen-1.8b-chat", messages=messages, result_format='message', stream=True ) for response in gen: if response.status_code == HTTPStatus.OK: role = response.output.choices[0].message.role response = response.output.choices[0].message.content system, history = messages_to_history(messages + [{'role': role, 'content': response}]) yield '', history, system else: raise HTTPError('Request id: %s, Status code: %s, error code: %s, error message: %s' % ( response.request_id, response.status_code, response.code, response.message )) with gr.Blocks() as demo: gr.Markdown("""

""") gr.Markdown("""

Qwen-1.8B-Chat Bot👾
""") gr.Markdown("""
通义千问-1.8B(Qwen-1.8B) 是阿里云研发的通义千问大模型系列的18亿参数规模的模型。
""") with gr.Row(): with gr.Column(scale=3): system_input = gr.Textbox(value=default_system, lines=1, label='System') with gr.Column(scale=1): modify_system = gr.Button("🛠️ 设置system并清除历史对话", scale=2) system_state = gr.Textbox(value=default_system, visible=False) chatbot = gr.Chatbot(label='Qwen-1.8B-Chat') textbox = gr.Textbox(lines=2, label='Input') with gr.Row(): clear_history = gr.Button("🧹 清除历史对话") sumbit = gr.Button("🚀 发送") sumbit.click(model_chat, inputs=[textbox, chatbot, system_state], outputs=[textbox, chatbot, system_input]) clear_history.click(fn=clear_session, inputs=[], outputs=[textbox, chatbot]) modify_system.click(fn=modify_system_session, inputs=[system_input], outputs=[system_state, system_input, chatbot]) demo.queue(api_open=False).launch(max_threads=10,height=800, share=False)