# -*- coding: utf-8 -*- # """gradio_app.ipynb # Automatically generated by Colaboratory. # Original file is located at # https://colab.research.google.com/drive/1u8oKw0KTptVWpY-cKFL87N2IDDrM4lTc # """ ## import gradio as gr import pandas as pd import numpy as np import pickle from scipy.special import softmax from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig # Requirements model_path = "QuophyDzifa/Sentiment-Analysis-Model" tokenizer = AutoTokenizer.from_pretrained(model_path) config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) def sent_analysis(text): text = preprocess(text) # PyTorch-based models encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores_ = output[0][0].detach().numpy() scores_ = softmax(scores_) # Format output dict of scores labels = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'} scores = {labels[i]: float(s) for i, s in enumerate(scores_)} return scores demo = gr.Interface( fn=sent_analysis, inputs=gr.Textbox(placeholder="Share your thoughts on COVID vaccines..."), outputs="label", interpretation="default", examples=[ ["I feel confident about covid vaccines"], ["I do not like the covid vaccine"], ["I like the covid vaccines"], ["The covid vaccines are effective"] ], title="COVID Vaccine Sentiment Analysis", description="An AI model that predicts sentiment about COVID vaccines, providing labels and probabilities for 'NEGATIVE', 'NEUTRAL', and 'POSITIVE' sentiments.", theme="default", live=True ) if __name__ == "__main__": demo.launch("0.0.0.0:7860")