Spaces:
Sleeping
Sleeping
yoursdvniel
commited on
Commit
•
977039f
1
Parent(s):
536d413
Update main.py
Browse files
main.py
CHANGED
@@ -5,6 +5,7 @@ import io
|
|
5 |
from flask import Flask, request, jsonify
|
6 |
from flask_cors import CORS, cross_origin
|
7 |
import firebase_admin
|
|
|
8 |
from firebase_admin import credentials, firestore
|
9 |
from dotenv import load_dotenv
|
10 |
from pandasai import SmartDatalake
|
@@ -93,130 +94,99 @@ def marketing_rec():
|
|
93 |
|
94 |
return jsonify(str(response['text']))
|
95 |
|
96 |
-
# Profit/Customer Engagement Prediction endpoint
|
97 |
@app.route("/predict_metric", methods=["POST"])
|
98 |
@cross_origin()
|
99 |
def predict_metric():
|
100 |
try:
|
101 |
request_data = request.json
|
|
|
|
|
102 |
user_id = request_data.get("user_id")
|
103 |
interval = request_data.get("interval", 30)
|
104 |
metric_type = request_data.get("metric_type", "Profit") # "Profit" or "Customer Engagement"
|
105 |
|
106 |
-
#
|
107 |
-
|
|
|
|
|
108 |
|
109 |
transactions_ref = db.collection("system_users").document(user_id).collection("transactions")
|
110 |
data = []
|
111 |
|
|
|
112 |
if metric_type == "Profit":
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
for date, income in income_data.items():
|
137 |
-
expense = expense_data.get(date, 0)
|
138 |
-
data.append({"date": date, "amountDue": income - expense})
|
139 |
-
|
140 |
-
except Exception as e:
|
141 |
-
print("Error processing Profit data:", str(e))
|
142 |
-
return jsonify({"error": "Error processing Profit data"}), 500
|
143 |
|
144 |
elif metric_type == "Customer Engagement":
|
145 |
-
|
146 |
-
|
147 |
-
income_query = transactions_ref.where("transactionType", "==", "Income").stream()
|
148 |
-
|
149 |
-
engagement_data = {}
|
150 |
-
for doc in income_query:
|
151 |
-
transaction = doc.to_dict()
|
152 |
-
date_str = transaction["date"].toDate() # Convert Firestore Timestamp to DateTime
|
153 |
-
engagement_data[date_str] = engagement_data.get(date_str, 0) + 1
|
154 |
-
print(f"Engagement transaction - Date: {date_str}")
|
155 |
-
|
156 |
-
for date, count in engagement_data.items():
|
157 |
-
data.append({"date": date, "amountDue": count})
|
158 |
-
|
159 |
-
except Exception as e:
|
160 |
-
print("Error processing Customer Engagement data:", str(e))
|
161 |
-
return jsonify({"error": "Error processing Customer Engagement data"}), 500
|
162 |
-
|
163 |
-
# Create DataFrame from the aggregated data
|
164 |
-
try:
|
165 |
-
df = pd.DataFrame(data)
|
166 |
-
print("Data before processing:", df)
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
|
175 |
-
|
176 |
-
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
181 |
|
182 |
-
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
return jsonify({"error": "Not enough data for prediction"}), 400
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
|
193 |
-
#
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
model.fit(df)
|
198 |
-
|
199 |
-
# DataFrame for future predictions
|
200 |
-
future_dates = model.make_future_dataframe(periods=interval)
|
201 |
-
forecast = model.predict(future_dates)
|
202 |
-
|
203 |
-
# Extract the forecast for the requested interval
|
204 |
-
forecast_data = forecast[['ds', 'yhat']].tail(interval)
|
205 |
-
predictions = [{"date": row['ds'].strftime('%Y-%m-%d'), "value": row['yhat']} for _, row in forecast_data.iterrows()]
|
206 |
|
207 |
-
|
208 |
-
print("Predictions:", predictions)
|
209 |
-
|
210 |
-
# Return predictions in JSON format
|
211 |
-
return jsonify({"predictedData": predictions})
|
212 |
-
|
213 |
-
except Exception as e:
|
214 |
-
print("Error in Prophet prediction:", str(e))
|
215 |
-
return jsonify({"error": "Error in Prophet prediction"}), 500
|
216 |
|
217 |
except Exception as e:
|
218 |
-
|
219 |
-
return jsonify({"error":
|
|
|
220 |
|
221 |
|
222 |
|
|
|
5 |
from flask import Flask, request, jsonify
|
6 |
from flask_cors import CORS, cross_origin
|
7 |
import firebase_admin
|
8 |
+
import logging
|
9 |
from firebase_admin import credentials, firestore
|
10 |
from dotenv import load_dotenv
|
11 |
from pandasai import SmartDatalake
|
|
|
94 |
|
95 |
return jsonify(str(response['text']))
|
96 |
|
|
|
97 |
@app.route("/predict_metric", methods=["POST"])
|
98 |
@cross_origin()
|
99 |
def predict_metric():
|
100 |
try:
|
101 |
request_data = request.json
|
102 |
+
logging.info(f"Received request data: {request_data}")
|
103 |
+
|
104 |
user_id = request_data.get("user_id")
|
105 |
interval = request_data.get("interval", 30)
|
106 |
metric_type = request_data.get("metric_type", "Profit") # "Profit" or "Customer Engagement"
|
107 |
|
108 |
+
# Check if user_id is provided
|
109 |
+
if not user_id:
|
110 |
+
logging.error("User ID is missing in the request")
|
111 |
+
return jsonify({"error": "User ID is missing"}), 400
|
112 |
|
113 |
transactions_ref = db.collection("system_users").document(user_id).collection("transactions")
|
114 |
data = []
|
115 |
|
116 |
+
# Fetch Income and Expense for Profit calculation
|
117 |
if metric_type == "Profit":
|
118 |
+
income_query = transactions_ref.where("transactionType", "==", "Income").stream()
|
119 |
+
expense_query = transactions_ref.where("transactionType", "==", "Expense").stream()
|
120 |
+
|
121 |
+
income_data = {}
|
122 |
+
expense_data = {}
|
123 |
+
|
124 |
+
for doc in income_query:
|
125 |
+
transaction = doc.to_dict()
|
126 |
+
logging.info(f"Processing income transaction: {transaction}")
|
127 |
+
date_str = transaction["date"]
|
128 |
+
amount = transaction["amountDue"]
|
129 |
+
income_data[date_str] = income_data.get(date_str, 0) + amount
|
130 |
+
|
131 |
+
for doc in expense_query:
|
132 |
+
transaction = doc.to_dict()
|
133 |
+
logging.info(f"Processing expense transaction: {transaction}")
|
134 |
+
date_str = transaction["date"]
|
135 |
+
amount = transaction["amountDue"]
|
136 |
+
expense_data[date_str] = expense_data.get(date_str, 0) + amount
|
137 |
+
|
138 |
+
for date, income in income_data.items():
|
139 |
+
expense = expense_data.get(date, 0)
|
140 |
+
data.append({"date": date, "amountDue": income - expense})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
elif metric_type == "Customer Engagement":
|
143 |
+
income_query = transactions_ref.where("transactionType", "==", "Income").stream()
|
144 |
+
engagement_data = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
for doc in income_query:
|
147 |
+
transaction = doc.to_dict()
|
148 |
+
logging.info(f"Processing engagement transaction: {transaction}")
|
149 |
+
date_str = transaction["date"]
|
150 |
+
engagement_data[date_str] = engagement_data.get(date_str, 0) + 1
|
151 |
|
152 |
+
for date, count in engagement_data.items():
|
153 |
+
data.append({"date": date, "amountDue": count})
|
154 |
|
155 |
+
# Log final aggregated data before processing
|
156 |
+
logging.info(f"Aggregated data: {data}")
|
157 |
|
158 |
+
# Data processing with Prophet
|
159 |
+
df = pd.DataFrame(data)
|
160 |
+
df['date'] = pd.to_datetime(df['date'])
|
161 |
+
df['date'] = df['date'].dt.tz_localize(None)
|
162 |
+
df = df.sort_values("date").set_index("date")
|
163 |
+
df = df.resample("D").sum().reset_index()
|
164 |
+
df.columns = ["ds", "y"]
|
165 |
|
166 |
+
# Check if data is sufficient
|
167 |
+
if df.shape[0] < 10:
|
168 |
+
logging.warning("Not enough data to train the Prophet model")
|
169 |
+
return jsonify({"error": "Not enough data for prediction"}), 400
|
170 |
|
171 |
+
# Train Prophet model
|
172 |
+
model = Prophet(daily_seasonality=True, yearly_seasonality=True)
|
173 |
+
model.fit(df)
|
|
|
174 |
|
175 |
+
# Make future predictions
|
176 |
+
future_dates = model.make_future_dataframe(periods=interval)
|
177 |
+
forecast = model.predict(future_dates)
|
178 |
|
179 |
+
# Prepare and log predictions
|
180 |
+
forecast_data = forecast[['ds', 'yhat']].tail(interval)
|
181 |
+
predictions = [{"date": row['ds'].strftime('%Y-%m-%d'), "value": row['yhat']} for _, row in forecast_data.iterrows()]
|
182 |
+
logging.info(f"Predictions: {predictions}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
return jsonify({"predictedData": predictions})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
except Exception as e:
|
187 |
+
logging.error(f"Error in /predict_metric endpoint: {e}")
|
188 |
+
return jsonify({"error": str(e)}), 500
|
189 |
+
|
190 |
|
191 |
|
192 |
|