Spaces:
Sleeping
Sleeping
from langchain_google_genai import ChatGoogleGenerativeAI | |
import pandas as pd | |
import os | |
import io | |
from flask import Flask, request, jsonify | |
from flask_cors import CORS, cross_origin | |
import firebase_admin | |
import logging | |
from firebase_admin import credentials, firestore | |
from dotenv import load_dotenv | |
from pandasai import SmartDatalake | |
from pandasai.responses.response_parser import ResponseParser | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from datetime import datetime | |
import matplotlib.pyplot as plt | |
from statsmodels.tsa.holtwinters import ExponentialSmoothing | |
from prophet import Prophet | |
load_dotenv() | |
app = Flask(__name__) | |
cors = CORS(app) | |
# Initialize Firebase app | |
if not firebase_admin._apps: | |
cred = credentials.Certificate("quant-app-99d09-firebase-adminsdk-6prb1-37f34e1c91.json") | |
firebase_admin.initialize_app(cred) | |
db = firestore.client() | |
class FlaskResponse(ResponseParser): | |
def __init__(self, context) -> None: | |
super().__init__(context) | |
def format_dataframe(self, result): | |
return result['value'].to_html() | |
def format_plot(self, result): | |
try: | |
img_path = result['value'] | |
except ValueError: | |
img_path = str(result['value']) | |
print("ValueError:", img_path) | |
print("response_class_path:", img_path) | |
return img_path | |
def format_other(self, result): | |
return str(result['value']) | |
gemini_api_key = os.getenv('Gemini') | |
llm = ChatGoogleGenerativeAI(api_key=gemini_api_key, model='gemini-1.5-flash-001', temperature=0.1) | |
# Endpoint for handling questions to the bot using transaction data | |
def bot(): | |
user_id = request.json.get("user_id") | |
user_question = request.json.get("user_question") | |
inventory_ref = db.collection("system_users").document(user_id).collection('inventory') | |
tasks_ref = db.collection("system_users").document(user_id).collection('tasks') | |
transactions_ref = db.collection("system_users").document(user_id).collection('transactions') | |
inventory_list = [doc.to_dict() for doc in inventory_ref.stream()] | |
tasks_list = [doc.to_dict() for doc in tasks_ref.stream()] | |
transactions_list = [doc.to_dict() for doc in transactions_ref.stream()] | |
inventory_df = pd.DataFrame(inventory_list) | |
transactions_df = pd.DataFrame(transactions_list) | |
tasks_df = pd.DataFrame(tasks_list) | |
lake = SmartDatalake([inventory_df, transactions_df, tasks_df], config={"llm": llm, "response_parser": FlaskResponse, "enable_cache": False, "save_logs": False}) | |
response = lake.chat(user_question) | |
print(user_question) | |
return jsonify(str(response)) | |
# Marketing recommendations endpoint | |
def marketing_rec(): | |
user_id = request.json.get("user_id") | |
transactions_ref = db.collection("system_users").document(user_id).collection('transactions') | |
transactions_list = [doc.to_dict() for doc in transactions_ref.stream()] | |
transactions_df = pd.DataFrame(transactions_list) | |
prompt = PromptTemplate.from_template('You are a business analyst. Write a brief analysis and marketing tips for a small business using this transactions data {data_frame}') | |
chain = LLMChain(llm=llm, prompt=prompt, verbose=True) | |
response = chain.invoke(input=transactions_df) | |
print(response) | |
return jsonify(str(response['text'])) | |
# Profit/Customer Engagement Prediction endpoint | |
def predict_metric(): | |
request_data = request.json | |
user_id = request_data.get("user_id") | |
interval = request_data.get("interval", 30) | |
metric_type = request_data.get("metric_type", "Profit") # "Profit" or "Customer Engagement" | |
transactions_ref = db.collection("system_users").document(user_id).collection("transactions") | |
data = [] | |
if metric_type == "Profit": | |
# Fetch both Income and Expense transactions for Profit calculation | |
income_query = transactions_ref.where("transactionType", "==", "Income").stream() | |
expense_query = transactions_ref.where("transactionType", "==", "Expense").stream() | |
income_data = {} | |
expense_data = {} | |
for doc in income_query: | |
transaction = doc.to_dict() | |
date_str = transaction["date"] | |
amount = transaction["amountDue"] | |
income_data[date_str] = income_data.get(date_str, 0) + amount | |
for doc in expense_query: | |
transaction = doc.to_dict() | |
date_str = transaction["date"] | |
amount = transaction["amountDue"] | |
expense_data[date_str] = expense_data.get(date_str, 0) + amount | |
# Calculate net profit for each date | |
for date, income in income_data.items(): | |
expense = expense_data.get(date, 0) | |
data.append({"date": date, "amountDue": income - expense}) | |
elif metric_type == "Customer Engagement": | |
# Use count of Income transactions per day as Customer Engagement | |
income_query = transactions_ref.where("transactionType", "==", "Income").stream() | |
engagement_data = {} | |
for doc in income_query: | |
transaction = doc.to_dict() | |
date_str = transaction["date"] | |
engagement_data[date_str] = engagement_data.get(date_str, 0) + 1 | |
for date, count in engagement_data.items(): | |
data.append({"date": date, "amountDue": count}) | |
# Create DataFrame from the aggregated data | |
df = pd.DataFrame(data) | |
# Ensure 'date' column is datetime | |
df['date'] = pd.to_datetime(df['date']) | |
df['date'] = df['date'].dt.tz_localize(None) | |
# Set 'date' as index | |
df = df.sort_values("date").set_index("date") | |
# Resample daily to ensure regular intervals (fill missing dates) | |
df = df.resample("D").sum().reset_index() | |
df.columns = ["ds", "y"] # ds: date, y: target | |
# Check if there's enough data to train the model | |
if df.shape[0] < 10: | |
return jsonify({"error": "Not enough data for prediction"}) | |
# Initialize and fit the Prophet model | |
model = Prophet(daily_seasonality=True, yearly_seasonality=True) | |
model.fit(df) | |
# DataFrame for future predictions | |
future_dates = model.make_future_dataframe(periods=interval) | |
forecast = model.predict(future_dates) | |
# Extract the forecast for the requested interval | |
forecast_data = forecast[['ds', 'yhat']].tail(interval) | |
predictions = [{"date": row['ds'].strftime('%Y-%m-%d'), "value": row['yhat']} for _, row in forecast_data.iterrows()] | |
# Return predictions in JSON format | |
return jsonify({"predictedData": predictions}) | |
if __name__ == "__main__": | |
app.run(debug=True, host="0.0.0.0", port=7860) |