import gradio as gr import gspread from oauth2client.service_account import ServiceAccountCredentials import json import os import requests # Load Google Sheets credentials from secrets creds_json = os.getenv("GOOGLE_SHEETS_KEY_JSON") creds_dict = json.loads(creds_json) # Google Sheets setup scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"] creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope) client = gspread.authorize(creds) sheet = client.open("QF - Quant Request").sheet1 # Use the correct sheet name def validate_repo(link): """Check if the repository exists on Hugging Face.""" # Extract repo_id from the link (format: {username}/{model_name} or {dataset_name}) repo_id = link.split("https://huggingface.co/")[-1].strip("/") url = f"https://huggingface.co/api/models/{repo_id}" # Adjust the URL for datasets if needed response = requests.head(url) return response.status_code == 200 def check_quant_exists(link): """Check if the quantization request already exists in the Google Sheet.""" extracted_text = link.split("https://huggingface.co/")[-1] existing_texts = sheet.col_values(1) # Assuming the extracted text is in the first column return extracted_text in existing_texts def check_quant_factory_quant_exists(link): """Check if a GGUF quantized model exists in the QuantFactory repository.""" # Extract the model name from the original link model_name = link.split('/')[-1] # Get the last item from the split list, which is the model name # Create the QuantFactory GGUF quant link quant_factory_link = f"https://huggingface.co/QuantFactory/{model_name}-GGUF" # Check if the QuantFactory GGUF repo exists response = requests.head(quant_factory_link) if response.status_code == 200: return True, quant_factory_link else: return False, quant_factory_link def submit_link(link): # Normalize the input link if not link.startswith("https://huggingface.co"): link = f"https://huggingface.co/{link}" # Validate the repo if not validate_repo(link): return "Invalid model or repository link. Please provide a valid Hugging Face link." # Check if the GGUF quantized model already exists in QuantFactory quant_exists, quant_link = check_quant_factory_quant_exists(link) if quant_exists: model_name = link.split('/')[-1] # Extract the model name # Return a formatted Markdown string to create a clickable hyperlink return f"Quant already exists at [QuantFactory/{model_name}-GGUF]({quant_link})." # Check if the quant request already exists in the Google Sheet if check_quant_exists(link): return "Quant requests have already been made for this model." # Extract text after "huggingface.co/" extracted_text = link.split("https://huggingface.co/")[-1] # Append the row with the extracted text and default status "Pending" row_index = len(sheet.get_all_values()) + 1 sheet.append_row(["", ""]) # Append an empty row first to ensure correct row index # Set the hyperlink formula in the first column sheet.update_cell(row_index, 1, f'=HYPERLINK("{link}", "{extracted_text}")') # Copy content from cell B2 to the new row in column B b2_value = sheet.cell(2, 2).value sheet.update_cell(row_index, 2, b2_value) return "Request submitted successfully." # Gradio Interface with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1): # Left column gr.Markdown("## QuantFactory - Model Request") link_input = gr.Textbox(label="Hugging Face Link") submit_button = gr.Button("Submit") result = gr.Markdown() # Use Markdown to render the output as a clickable hyperlink submit_button.click(fn=submit_link, inputs=link_input, outputs=result) with gr.Column(scale=1): # Right column gr.Image("image.png") # Display the image on the right demo.launch()