import os from argparse import Namespace import torchvision import numpy as np import torch from torch.utils.data import DataLoader import sys import time from tqdm import tqdm from Project.mapper.training.train_utils import convert_s_tensor_to_list sys.path.append(".") sys.path.append("..") from Project.mapper.datasets.latents_dataset import LatentsDataset, StyleSpaceLatentsDataset from Project.mapper.options.test_options import TestOptions from Project.mapper.styleclip_mapper import StyleCLIPMapper def run(test_opts): out_path_results = os.path.join(test_opts.exp_dir, 'inference_results') os.makedirs(out_path_results, exist_ok=True) # update test options with options used during training ckpt = torch.load(test_opts.checkpoint_path, map_location='cpu') opts = ckpt['opts'] opts.update(vars(test_opts)) opts = Namespace(**opts) net = StyleCLIPMapper(opts) net.eval() test_latents = torch.load(opts.latents_test_path) if opts.work_in_stylespace: dataset = StyleSpaceLatentsDataset(latents=[l.cpu() for l in test_latents], opts=opts) else: dataset = LatentsDataset(latents=test_latents, opts=opts) dataloader = DataLoader(dataset, batch_size=opts.test_batch_size, shuffle=False, num_workers=int(opts.test_workers), drop_last=True) if opts.n_images is None: opts.n_images = len(dataset) global_i = 0 global_time = [] for input_batch in tqdm(dataloader): if global_i >= opts.n_images: break with torch.no_grad(): if opts.work_in_stylespace: input_cuda = convert_s_tensor_to_list(input_batch) input_cuda = [c for c in input_cuda] else: input_cuda = input_batch input_cuda = input_cuda tic = time.time() result_batch = run_on_batch(input_cuda, net, opts.couple_outputs, opts.work_in_stylespace) toc = time.time() global_time.append(toc - tic) for i in range(opts.test_batch_size): im_path = str(global_i).zfill(5) if test_opts.couple_outputs: couple_output = torch.cat([result_batch[2][i].unsqueeze(0), result_batch[0][i].unsqueeze(0)]) torchvision.utils.save_image(couple_output, os.path.join(out_path_results, f"{im_path}.jpg"), normalize=True, value_range=(-1, 1)) else: torchvision.utils.save_image(result_batch[0][i], os.path.join(out_path_results, f"{im_path}.jpg"), normalize=True, value_range=(-1, 1)) torch.save(result_batch[1][i].detach().cpu(), os.path.join(out_path_results, f"latent_{im_path}.pt")) global_i += 1 stats_path = os.path.join(opts.exp_dir, 'stats.txt') result_str = 'Runtime {:.4f}+-{:.4f}'.format(np.mean(global_time), np.std(global_time)) print(result_str) with open(stats_path, 'w') as f: f.write(result_str) def run_on_batch(inputs, net, couple_outputs=False, stylespace=False): w = inputs with torch.no_grad(): if stylespace: delta = net.mapper(w) w_hat = [c + 0.1 * delta_c for (c, delta_c) in zip(w, delta)] x_hat, _, w_hat = net.decoder([w_hat], input_is_latent=True, return_latents=True, randomize_noise=False, truncation=1, input_is_stylespace=True) else: w_hat = w + 0.1 * net.mapper(w) x_hat, w_hat, _ = net.decoder([w_hat], input_is_latent=True, return_latents=True, randomize_noise=False, truncation=1) result_batch = (x_hat, w_hat) if couple_outputs: x, _ = net.decoder([w], input_is_latent=True, randomize_noise=False, truncation=1, input_is_stylespace=stylespace) result_batch = (x_hat, w_hat, x) return result_batch if __name__ == '__main__': test_opts = TestOptions().parse() run(test_opts)