#!/usr/bin/env python # coding: utf-8 # In[ ]: import streamlit as st import joblib import json import numpy as np import base64 import cv2 import pywt from PIL import Image import io __class_name_to_number = {} __class_number_to_name = {} __model = None def w2d(img, mode='haar', level=1): imArray = img #Datatype conversions #convert to grayscale imArray = cv2.cvtColor( imArray,cv2.COLOR_RGB2GRAY ) #convert to float imArray = np.float32(imArray) imArray /= 255; # compute coefficients coeffs=pywt.wavedec2(imArray, mode, level=level) #Process Coefficients coeffs_H=list(coeffs) coeffs_H[0] *= 0; # reconstruction imArray_H=pywt.waverec2(coeffs_H, mode); imArray_H *= 255; imArray_H = np.uint8(imArray_H) return imArray_H def classify_image(image_base64_data, file_path=None): imgs = get_cropped_image_if_2_eyes(file_path, image_base64_data) result = [] for img in imgs: scalled_raw_img = cv2.resize(img, (32, 32)) img_har = w2d(img, 'db1', 5) scalled_img_har = cv2.resize(img_har, (32, 32)) combined_img = np.vstack((scalled_raw_img.reshape(32 * 32 * 3, 1), scalled_img_har.reshape(32 * 32, 1))) len_image_array = 32*32*3 + 32*32 final = combined_img.reshape(1,len_image_array).astype(float) result.append({ 'class': class_number_to_name(__model.predict(final)[0]), 'class_probability': np.around(__model.predict_proba(final)*100,2).tolist()[0], 'class_dictionary': __class_name_to_number }) return result def class_number_to_name(class_num): return __class_number_to_name[class_num] def load_saved_artifacts(): print("loading saved artifacts...start") global __class_name_to_number global __class_number_to_name with open("./class_dictionary.json", "r") as f: __class_name_to_number = json.load(f) __class_number_to_name = {v:k for k,v in __class_name_to_number.items()} global __model if __model is None: with open('./saved_model.pkl', 'rb') as f: __model = joblib.load(f) print("loading saved artifacts...done") def get_cv2_image_from_base64_string(b64str): ''' credit: https://stackoverflow.com/questions/33754935/read-a-base-64-encoded-image-from-memory-using-opencv-python-library :param uri: :return: ''' encoded_data = b64str.split(',')[1] nparr = np.frombuffer(base64.b64decode(encoded_data), np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) return img def get_cropped_image_if_2_eyes(image_path, image_base64_data): face_cascade = cv2.CascadeClassifier('./opencv/haarcascades/haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('./opencv/haarcascades/haarcascade_eye.xml') if image_path: img = cv2.imread(image_path) else: img = get_cv2_image_from_base64_string(image_base64_data) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) cropped_faces = [] for (x,y,w,h) in faces: roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) if len(eyes) >= 2: cropped_faces.append(roi_color) return cropped_faces def get_b64_test_image_for_virat(): with open("b64.txt") as f: return f.read() # Load the saved artifacts at the start of the app load_saved_artifacts() st.title("Celebrity Image Classification") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image', use_column_width=True) # Convert PIL Image to base64 buffered = io.BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() # Auto-classify the image result = classify_image(f"data:image/png;base64,{img_str}", None) if result: st.subheader("Classification Results:") for r in result: # Create a dictionary of celebrity names and their probabilities probabilities = dict(zip(r['class_dictionary'].keys(), r['class_probability'])) # Sort the probabilities in descending order sorted_probabilities = sorted(probabilities.items(), key=lambda x: x[1], reverse=True) # Create a DataFrame for the tabulator import pandas as pd df = pd.DataFrame(sorted_probabilities, columns=['Celebrity', 'Probability']) # Display the tabulator st.table(df) # Display the top prediction st.write(f"Top prediction: {r['class']} with {r['class_probability'][r['class_dictionary'][r['class']]]}% probability") else: st.write("No faces detected in the image.")