import gradio as gr import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import cv2 import os from PIL import Image import warnings import sys # Added for PyInstaller warnings.filterwarnings('ignore') # --- PyInstaller Helper --- # Determines the correct path for bundled data files (models) def resource_path(relative_path): """ Get absolute path to resource, works for dev and for PyInstaller """ try: # PyInstaller creates a temp folder and stores path in _MEIPASS base_path = sys._MEIPASS except Exception: base_path = os.path.abspath(".") return os.path.join(base_path, relative_path) # --- Model and Helper Class Definitions --- # Most of these classes are copied directly from the project's files # (extractor.py, update.py, seg.py, model.py, inference.py) # to make this Gradio app a self-contained script. # from extractor.py class ResidualBlock(nn.Module): def __init__(self, in_planes, planes, norm_fn='group', stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) self.relu = nn.ReLU(inplace=True) if norm_fn == 'batch': self.norm1 = nn.BatchNorm2d(planes) self.norm2 = nn.BatchNorm2d(planes) if not stride == 1: self.norm3 = nn.BatchNorm2d(planes) elif norm_fn == 'instance': self.norm1 = nn.InstanceNorm2d(planes) self.norm2 = nn.InstanceNorm2d(planes) if not stride == 1: self.norm3 = nn.InstanceNorm2d(planes) if stride == 1: self.downsample = None else: self.downsample = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) def forward(self, x): y = x y = self.relu(self.norm1(self.conv1(y))) y = self.relu(self.norm2(self.conv2(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x + y) class BasicEncoder(nn.Module): def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): super(BasicEncoder, self).__init__() self.norm_fn = norm_fn if self.norm_fn == 'batch': self.norm1 = nn.BatchNorm2d(64) elif self.norm_fn == 'instance': self.norm1 = nn.InstanceNorm2d(64) self.conv1 = nn.Conv2d(3, 80, kernel_size=7, stride=2, padding=3) self.relu1 = nn.ReLU(inplace=True) self.in_planes = 80 self.layer1 = self._make_layer(80, stride=1) self.layer2 = self._make_layer(160, stride=2) self.layer3 = self._make_layer(240, stride=2) self.conv2 = nn.Conv2d(240, output_dim, kernel_size=1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_layer(self, dim, stride=1): layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.norm1(x) x = self.relu1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.conv2(x) return x # from update.py class FlowHead(nn.Module): def __init__(self, input_dim=128, hidden_dim=256): super(FlowHead, self).__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class SepConvGRU(nn.Module): def __init__(self, hidden_dim=128, input_dim=192+128): super(SepConvGRU, self).__init__() self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) def forward(self, h, x): hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz1(hx)) r = torch.sigmoid(self.convr1(hx)) q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz2(hx)) r = torch.sigmoid(self.convr2(hx)) q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q return h class BasicMotionEncoder(nn.Module): def __init__(self): super(BasicMotionEncoder, self).__init__() self.convc1 = nn.Conv2d(320, 240, 1, padding=0) self.convc2 = nn.Conv2d(240, 160, 3, padding=1) self.convf1 = nn.Conv2d(2, 160, 7, padding=3) self.convf2 = nn.Conv2d(160, 80, 3, padding=1) self.conv = nn.Conv2d(160+80, 160-2, 3, padding=1) def forward(self, flow, corr): cor = F.relu(self.convc1(corr)) cor = F.relu(self.convc2(cor)) flo = F.relu(self.convf1(flow)) flo = F.relu(self.convf2(flo)) cor_flo = torch.cat([cor, flo], dim=1) out = F.relu(self.conv(cor_flo)) return torch.cat([out, flow], dim=1) class BasicUpdateBlock(nn.Module): def __init__(self, hidden_dim=128): super(BasicUpdateBlock, self).__init__() self.encoder = BasicMotionEncoder() self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=160+160) self.flow_head = FlowHead(hidden_dim, hidden_dim=320) self.mask = nn.Sequential( nn.Conv2d(hidden_dim, 288, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(288, 64*9, 1, padding=0)) def forward(self, net, inp, corr, flow): motion_features = self.encoder(flow, corr) inp = torch.cat([inp, motion_features], dim=1) net = self.gru(net, inp) delta_flow = self.flow_head(net) mask = .25 * self.mask(net) return net, mask, delta_flow # from seg.py class REBNCONV(nn.Module): def __init__(self, in_ch=3, out_ch=3, dirate=1): super(REBNCONV, self).__init__() self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate) self.bn_s1 = nn.BatchNorm2d(out_ch) self.relu_s1 = nn.ReLU(inplace=True) def forward(self, x): return self.relu_s1(self.bn_s1(self.conv_s1(x))) def _upsample_like(src, tar): return F.interpolate(src, size=tar.shape[2:], mode='bilinear', align_corners=False) class RSU7(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(RSU7, self).__init__() self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1) self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2) self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) def forward(self, x): hxin = self.rebnconvin(x) hx1 = self.rebnconv1(hxin) hx = self.pool1(hx1) hx2 = self.rebnconv2(hx) hx = self.pool2(hx2) hx3 = self.rebnconv3(hx) hx = self.pool3(hx3) hx4 = self.rebnconv4(hx) hx = self.pool4(hx4) hx5 = self.rebnconv5(hx) hx = self.pool5(hx5) hx6 = self.rebnconv6(hx) hx7 = self.rebnconv7(hx6) hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1)) hx6dup = _upsample_like(hx6d, hx5) hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1)) hx5dup = _upsample_like(hx5d, hx4) hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) hx4dup = _upsample_like(hx4d, hx3) hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) hx3dup = _upsample_like(hx3d, hx2) hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) hx2dup = _upsample_like(hx2d, hx1) hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) return hx1d + hxin class RSU6(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(RSU6, self).__init__() self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2) self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) def forward(self, x): hxin = self.rebnconvin(x) hx1 = self.rebnconv1(hxin) hx = self.pool1(hx1) hx2 = self.rebnconv2(hx) hx = self.pool2(hx2) hx3 = self.rebnconv3(hx) hx = self.pool3(hx3) hx4 = self.rebnconv4(hx) hx = self.pool4(hx4) hx5 = self.rebnconv5(hx) hx6 = self.rebnconv6(hx5) hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1)) hx5dup = _upsample_like(hx5d, hx4) hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) hx4dup = _upsample_like(hx4d, hx3) hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) hx3dup = _upsample_like(hx3d, hx2) hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) hx2dup = _upsample_like(hx2d, hx1) hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) return hx1d + hxin class RSU5(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(RSU5, self).__init__() self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2) self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) def forward(self, x): hxin = self.rebnconvin(x) hx1 = self.rebnconv1(hxin) hx = self.pool1(hx1) hx2 = self.rebnconv2(hx) hx = self.pool2(hx2) hx3 = self.rebnconv3(hx) hx = self.pool3(hx3) hx4 = self.rebnconv4(hx) hx5 = self.rebnconv5(hx4) hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1)) hx4dup = _upsample_like(hx4d, hx3) hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) hx3dup = _upsample_like(hx3d, hx2) hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) hx2dup = _upsample_like(hx2d, hx1) hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) return hx1d + hxin class RSU4(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(RSU4, self).__init__() self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2) self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) def forward(self, x): hxin = self.rebnconvin(x) hx1 = self.rebnconv1(hxin) hx = self.pool1(hx1) hx2 = self.rebnconv2(hx) hx = self.pool2(hx2) hx3 = self.rebnconv3(hx) hx4 = self.rebnconv4(hx3) hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) hx3dup = _upsample_like(hx3d, hx2) hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) hx2dup = _upsample_like(hx2d, hx1) hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) return hx1d + hxin class RSU4F(nn.Module): def __init__(self, in_ch=3, mid_ch=12, out_ch=3): super(RSU4F, self).__init__() self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2) self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4) self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8) self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4) self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2) self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) def forward(self, x): hxin = self.rebnconvin(x) hx1 = self.rebnconv1(hxin) hx2 = self.rebnconv2(hx1) hx3 = self.rebnconv3(hx2) hx4 = self.rebnconv4(hx3) hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1)) hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1)) return hx1d + hxin class U2NETP(nn.Module): def __init__(self, in_ch=3, out_ch=1): super(U2NETP, self).__init__() self.stage1 = RSU7(in_ch, 16, 64) self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage2 = RSU6(64, 16, 64) self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage3 = RSU5(64, 16, 64) self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage4 = RSU4(64, 16, 64) self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage5 = RSU4F(64, 16, 64) self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage6 = RSU4F(64, 16, 64) self.stage5d = RSU4F(128, 16, 64) self.stage4d = RSU4(128, 16, 64) self.stage3d = RSU5(128, 16, 64) self.stage2d = RSU6(128, 16, 64) self.stage1d = RSU7(128, 16, 64) self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) self.side3 = nn.Conv2d(64, out_ch, 3, padding=1) self.side4 = nn.Conv2d(64, out_ch, 3, padding=1) self.side5 = nn.Conv2d(64, out_ch, 3, padding=1) self.side6 = nn.Conv2d(64, out_ch, 3, padding=1) self.outconv = nn.Conv2d(6, out_ch, 1) def forward(self, x): hx = x hx1 = self.stage1(hx) hx = self.pool12(hx1) hx2 = self.stage2(hx) hx = self.pool23(hx2) hx3 = self.stage3(hx) hx = self.pool34(hx3) hx4 = self.stage4(hx) hx = self.pool45(hx4) hx5 = self.stage5(hx) hx = self.pool56(hx5) hx6 = self.stage6(hx) hx6up = _upsample_like(hx6, hx5) hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) hx5dup = _upsample_like(hx5d, hx4) hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) hx4dup = _upsample_like(hx4d, hx3) hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) hx3dup = _upsample_like(hx3d, hx2) hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) hx2dup = _upsample_like(hx2d, hx1) hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) d1 = self.side1(hx1d) d2 = self.side2(hx2d) d2 = _upsample_like(d2, d1) d3 = self.side3(hx3d) d3 = _upsample_like(d3, d1) d4 = self.side4(hx4d) d4 = _upsample_like(d4, d1) d5 = self.side5(hx5d) d5 = _upsample_like(d5, d1) d6 = self.side6(hx6) d6 = _upsample_like(d6, d1) d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1)) return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(d4), torch.sigmoid(d5), torch.sigmoid(d6) # from model.py def bilinear_sampler(img, coords, mode='bilinear', mask=False): H, W = img.shape[-2:] xgrid, ygrid = coords.split([1, 1], dim=-1) xgrid = 2 * xgrid / (W - 1) - 1 ygrid = 2 * ygrid / (H - 1) - 1 grid = torch.cat([xgrid, ygrid], dim=-1) img = F.grid_sample(img, grid, align_corners=True) if mask: mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) return img, mask.float() return img def coords_grid(batch, ht, wd): coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) coords = torch.stack(coords[::-1], dim=0).float() return coords[None].repeat(batch, 1, 1, 1) class DocScanner(nn.Module): def __init__(self): super(DocScanner, self).__init__() self.hidden_dim = hdim = 160 self.context_dim = 160 self.fnet = BasicEncoder(output_dim=320, norm_fn='instance') self.update_block = BasicUpdateBlock(hidden_dim=hdim) def forward(self, image1, iters=12, flow_init=None, test_mode=False): image1 = image1.contiguous() fmap1 = self.fnet(image1) warpfea = fmap1 net, inp = torch.split(fmap1, [160, 160], dim=1) net = torch.tanh(net) inp = torch.relu(inp) coodslar, coords0, coords1 = self.initialize_flow(image1) if flow_init is not None: coords1 = coords1 + flow_init flow_predictions = [] for itr in range(iters): coords1 = coords1.detach() flow = coords1 - coords0 net, up_mask, delta_flow = self.update_block(net, inp, warpfea, flow) coords1 = coords1 + delta_flow flow_up = self.upsample_flow(coords1 - coords0, up_mask) bm_up = coodslar + flow_up warpfea = bilinear_sampler(fmap1, coords1.permute(0, 2, 3, 1)) flow_predictions.append(bm_up) if test_mode: return bm_up return flow_predictions def initialize_flow(self, img): N, C, H, W = img.shape coodslar = coords_grid(N, H, W).to(img.device) coords0 = coords_grid(N, H // 8, W // 8).to(img.device) coords1 = coords_grid(N, H // 8, W // 8).to(img.device) return coodslar, coords0, coords1 def upsample_flow(self, flow, mask): N, _, H, W = flow.shape mask = mask.view(N, 1, 9, 8, 8, H, W) mask = torch.softmax(mask, dim=2) up_flow = F.unfold(8 * flow, [3, 3], padding=1) up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) up_flow = torch.sum(mask * up_flow, dim=2) up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) return up_flow.reshape(N, 2, 8 * H, 8 * W) # from inference.py class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.msk = U2NETP(3, 1) self.bm = DocScanner() def forward(self, x): msk, _, _, _, _, _, _ = self.msk(x) msk = (msk > 0.5).float() x = msk * x bm = self.bm(x, iters=12, test_mode=True) bm = (2 * (bm / 286.8) - 1) * 0.99 return bm def reload_seg_model(model, path=""): if not bool(path) or not os.path.exists(path): print("Warning: Segmentation model path not found. Using initial weights.") return model model_dict = model.state_dict() pretrained_dict = torch.load(path, map_location='cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) return model def reload_rec_model(model, path=""): if not bool(path) or not os.path.exists(path): print("Warning: Rectification model path not found. Using initial weights.") return model model_dict = model.state_dict() pretrained_dict = torch.load(path, map_location='cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) return model # --- Gradio App Logic --- # Configuration SEG_MODEL_PATH = resource_path('model_pretrained/seg.pth') REC_MODEL_PATH = resource_path('model_pretrained/DocScanner-L.pth') DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' # Load models once print("Initializing and loading models...") net = Net().to(DEVICE) reload_seg_model(net.msk, SEG_MODEL_PATH) reload_rec_model(net.bm, REC_MODEL_PATH) net.eval() print("Models loaded successfully.") def rectify_image(distorted_image): """ Takes a distorted image as a numpy array, rectifies it using the DocScanner model, and returns the rectified image as a numpy array. """ if distorted_image is None: return None im_ori = distorted_image.astype(np.float32) / 255. h, w, _ = im_ori.shape # Pre-process im = cv2.resize(im_ori, (288, 288)) im = im.transpose(2, 0, 1) im = torch.from_numpy(im).float().unsqueeze(0) with torch.no_grad(): # Inference bm = net(im.to(DEVICE)) bm = bm.cpu() # Post-process bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow bm0 = cv2.blur(bm0, (3, 3)) bm1 = cv2.blur(bm1, (3, 3)) lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2 # Warp the original image out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True) # Convert to displayable format rectified_image = (out[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8) return rectified_image # --- Gradio Interface --- DESCRIPTION = """ This Space demonstrates DocScanner, a deep learning model that automatically corrects geometric distortions in document images. If you have a photo of a document that is warped, skewed, or has curled edges, this tool can transform it into a flat, top-down, scanner-like image. This application is an implementation of the research paper: DocScanner: Robust Document Image Rectification with Progressive Learning (https://arxiv.org/abs/2110.14968). # How to Use 1. Upload an Image: Drag and drop a distorted document image into the input box, or click to browse your files. 2. Submit: Click the "Submit" button to begin the rectification process. 3. View the Result: The corrected, flattened document will appear in the output box on the right. # Technical Details * Model: This demo uses the DocScanner-L model, as described in the paper. * Technology: The application is built with Python, PyTorch, and the Gradio library. """ if __name__ == "__main__": iface = gr.Interface( fn=rectify_image, inputs=gr.Image(type="numpy", label="Upload Distorted Document"), outputs=gr.Image(type="numpy", label="Rectified Document"), title="DocScanner: Document Image Rectification", description=DESCRIPTION, examples=[ ['distorted/27_2 copy.png'], ['distorted/42_2 copy.png'], ['distorted/48_1 copy.png'] ] ) iface.launch()