import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Load DeepSeek-Coder-7B Model MODEL_NAME = "deepseek-ai/deepseek-coder-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.float16, device_map="auto" ) # System Prompt to Guide the Model SYSTEM_PROMPT = """ You are a highly skilled AI specialized in programming and mathematics. - For coding questions, provide clear explanations and format code inside triple backticks. - For math problems, explain step-by-step solutions neatly. - Keep responses professional, concise, and well-structured. """ def generate_response(prompt): formatted_prompt = f"{SYSTEM_PROMPT}\n\nUser: {prompt}\nAI:" # Injecting system instructions inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda") outputs = model.generate(inputs["input_ids"], max_length=700) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create Gradio Interface interface = gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=5, placeholder="Enter your math or coding question here..."), outputs="text", title="DeepSeek Coder & Math Pro", description="Ask anything about programming or mathematics!", theme="default", ) interface.launch()