""" https://github.com/ProteinDesignLab/protpardelle License: MIT Author: Alex Chu Various utils for handling protein data. """ import os import shlex import subprocess import sys import torch import yaml import argparse from einops import rearrange, repeat import numpy as np import torch import torch.nn.functional as F import Bio from Bio.PDB.DSSP import DSSP from core import protein from core import protein_mpnn from core import residue_constants PATH_TO_TMALIGN = "/home/alexechu/essentials_kit/ml_utils/align/TMalign/TMalign" ################ STRUCTURE/FORMAT UTILS ############################# def aatype_to_seq(aatype, seq_mask=None): if seq_mask is None: seq_mask = torch.ones_like(aatype) mapping = residue_constants.restypes_with_x mapping = mapping + [""] unbatched = False if len(aatype.shape) == 1: unbatched = True aatype = [aatype] seq_mask = [seq_mask] seqs = [] for i, ai in enumerate(aatype): seq = [] for j, aa in enumerate(ai): if seq_mask[i][j] == 1: try: seq.append(mapping[aa]) except IndexError: print(aatype[i]) raise Exception(f"Error in mapping {aa} at {i},{j}") seqs.append("".join(seq)) if unbatched: seqs = seqs[0] return seqs def seq_to_aatype(seq, num_tokens=21): if num_tokens == 20: mapping = residue_constants.restype_order if num_tokens == 21: mapping = residue_constants.restype_order_with_x if num_tokens == 22: mapping = residue_constants.restype_order_with_x mapping[""] = 21 return torch.Tensor([mapping[aa] for aa in seq]).long() def batched_seq_to_aatype_and_mask(seqs, max_len=None): if max_len is None: max_len = max([len(s) for s in seqs]) aatypes = [] seq_mask = [] for s in seqs: pad_size = max_len - len(s) aatype = seq_to_aatype(s) aatypes.append(F.pad(aatype, (0, pad_size))) mask = torch.ones_like(aatype).float() seq_mask.append(F.pad(mask, (0, pad_size))) return torch.stack(aatypes), torch.stack(seq_mask) def atom37_mask_from_aatype(aatype, seq_mask=None): # source_mask is (21,37) originally source_mask = torch.Tensor(residue_constants.restype_atom37_mask).to(aatype.device) bb_atoms = source_mask[residue_constants.restype_order["G"]][None] # Use only the first 20 plus bb atoms for X, mask source_mask = torch.cat([source_mask[:-1], bb_atoms, bb_atoms], 0) atom_mask = source_mask[aatype] if seq_mask is not None: atom_mask *= seq_mask[..., None] return atom_mask def atom37_coords_from_atom14(atom14_coords, aatype, return_mask=False): # Unbatched device = atom14_coords.device atom37_coords = torch.zeros((atom14_coords.shape[0], 37, 3)).to(device) for i in range(atom14_coords.shape[0]): # per residue aa = aatype[i] aa_3name = residue_constants.restype_1to3[residue_constants.restypes[aa]] atom14_atoms = residue_constants.restype_name_to_atom14_names[aa_3name] for j in range(14): atom_name = atom14_atoms[j] if atom_name != "": atom37_idx = residue_constants.atom_order[atom_name] atom37_coords[i, atom37_idx, :] = atom14_coords[i, j, :] if return_mask: atom37_mask = atom37_mask_from_aatype(aatype) return atom37_coords, atom37_mask return atom37_coords def atom73_mask_from_aatype(aatype, seq_mask=None): source_mask = torch.Tensor(residue_constants.restype_atom73_mask).to(aatype.device) atom_mask = source_mask[aatype] if seq_mask is not None: atom_mask *= seq_mask[..., None] return atom_mask def atom37_to_atom73(atom37, aatype, return_mask=False): # Unbatched atom73 = torch.zeros((atom37.shape[0], 73, 3)).to(atom37) for i in range(atom37.shape[0]): aa = aatype[i] aa1 = residue_constants.restypes[aa] for j, atom37_name in enumerate(residue_constants.atom_types): atom73_name = atom37_name if atom37_name not in ["N", "CA", "C", "O", "CB"]: atom73_name = aa1 + atom73_name if atom73_name in residue_constants.atom73_names_to_idx: atom73_idx = residue_constants.atom73_names_to_idx[atom73_name] atom73[i, atom73_idx, :] = atom37[i, j, :] if return_mask: atom73_mask = atom73_mask_from_aatype(aatype) return atom73, atom73_mask return atom73 def atom73_to_atom37(atom73, aatype, return_mask=False): # Unbatched atom37_coords = torch.zeros((atom73.shape[0], 37, 3)).to(atom73) for i in range(atom73.shape[0]): # per residue aa = aatype[i] aa1 = residue_constants.restypes[aa] for j, atom_type in enumerate(residue_constants.atom_types): atom73_name = atom_type if atom73_name not in ["N", "CA", "C", "O", "CB"]: atom73_name = aa1 + atom73_name if atom73_name in residue_constants.atom73_names_to_idx: atom73_idx = residue_constants.atom73_names_to_idx[atom73_name] atom37_coords[i, j, :] = atom73[i, atom73_idx, :] if return_mask: atom37_mask = atom37_mask_from_aatype(aatype) return atom37_coords, atom37_mask return atom37_coords def get_dmap(pdb, atoms=["N", "CA", "C", "O"], batched=True, out="torch", device=None): def _dmap_from_coords(coords): coords = coords.contiguous() dmaps = torch.cdist(coords, coords).unsqueeze(1) if out == "numpy": return dmaps.detach().cpu().numpy() elif out == "torch": if device is not None: return dmaps.to(device) else: return dmaps if isinstance(pdb, str): # input is pdb file coords = load_coords_from_pdb(pdb, atoms=atoms).view(1, -1, 3) return _dmap_from_coords(coords) elif len(pdb.shape) == 2: # single set of coords if isinstance(pdb, np.ndarray): pdb = torch.Tensor(pdb) return _dmap_from_coords(pdb.unsqueeze(0)) elif len(pdb.shape) == 3 and batched: return _dmap_from_coords(pdb) elif len(pdb.shape) == 3 and not batched: return _dmap_from_coords(pdb.view(1, -1, 3)) elif len(pdb.shape) == 4: return _dmap_from_coords(pdb.view(pdb.size(0), -1, 3)) def get_channeled_dmap(coords): # coords is b, nres, natom, 3 coords = coords.permute(0, 2, 1, 3) dvecs = coords[..., None, :] - coords[..., None, :, :] # b, natom, nres, nres, 3 dists = torch.sqrt(dvecs.pow(2).sum(-1) + 1e-8) return dists def fill_in_cbeta_for_atom37(coords): b = coords[..., 1, :] - coords[..., 0, :] c = coords[..., 2, :] - coords[..., 1, :] a = torch.cross(b, c, dim=-1) cbeta = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + coords[..., 1, :] new_coords = torch.clone(coords) new_coords[..., 3, :] = cbeta return new_coords def get_distogram(coords, n_bins=20, start=2, return_onehot=True, seq_mask=None): # coords is b, nres, natom, 3 # distogram for cb atom (assume 3rd atom) coords_with_cb = fill_in_cbeta_for_atom37(coords) dists = get_channeled_dmap(coords_with_cb[:, :, 3:4]).squeeze(1) bins = torch.arange(start, start + n_bins - 1).to(dists.device) dgram = torch.bucketize(dists, bins) dgram_oh = F.one_hot(dgram, n_bins) if seq_mask is not None: mask_2d = seq_mask[:, :, None] * seq_mask[:, None, :] dgram = dgram * mask_2d dgram_oh = dgram_oh * mask_2d[..., None] if return_onehot: return dgram_oh return dgram def get_contacts(coords=None, distogram=None, seq_mask=None): if distogram is None: distogram = get_distogram(coords) contacts = (distogram.argmax(-1) < 6).float() if seq_mask is not None: contacts *= seq_mask[..., None] * seq_mask[..., None, :] return contacts def dihedral(a, b, c, d): # inputs can be (1,3), (n,3), or (bs,n,3) b1 = a - b b2 = b - c b3 = c - d n1 = F.normalize(torch.cross(b1, b2), dim=-1) n2 = F.normalize(torch.cross(b2, b3), dim=-1) m1 = torch.cross(n1, b2 / b2.norm(dim=-1).unsqueeze(-1)) y = (m1 * n2).sum(dim=-1) x = (n1 * n2).sum(dim=-1) return torch.atan2(y, x) def get_torsions_from_coords( coords, atoms=["N", "CA", "C", "O"], batched=True, out="torch", device=None ): """ Returns a n-dim array of shape (bs, nres, ntors), where ntors is the number of torsion angles (e.g. 2 if using phi and psi), with units of radians. """ if isinstance(coords, np.ndarray): coords = torch.Tensor(coords) if len(coords.shape) == 2: coords = coords.unsqueeze(0) if len(coords.shape) == 4: coords = coords.view(coords.size(0), -1, 3) if len(coords.shape) == 3 and not batched: coords = coords.view(1, -1, 3) if len(coords.shape) == 3: bs = coords.size(0) if "O" in atoms: idxs = [ i for i in range(coords.size(1)) if i % 4 != 3 ] # deselect O atoms for N-Ca-C-O coords coords = coords[:, idxs, :] a, b, c, d = ( coords[:, :-3, :], coords[:, 1:-2, :], coords[:, 2:-1, :], coords[:, 3:, :], ) torsions = dihedral( a, b, c, d ) # output order is psi-omega-phi, reorganize to (bs, nres, 3) torsions = torsions.view(bs, torsions.size(1) // 3, 3) omegaphi = torch.cat( (torch.zeros(bs, 1, 2).to(coords.device), torsions[:, :, 1:]), 1 ) psi = torch.cat((torsions[:, :, 0], torch.zeros(bs, 1).to(coords.device)), 1) torsions = torch.cat( ( omegaphi[:, :, 1].unsqueeze(-1), psi.unsqueeze(-1), omegaphi[:, :, 0].unsqueeze(-1), ), -1, ) else: raise Exception("input coords not of correct dims") if out == "numpy": return torsions.detach().cpu().numpy() elif out == "torch": if device is not None: return torsions.to(device) else: return torsions def get_trig_from_torsions(torsions, out="torch", device=None): """ Calculate unit circle projections from coords input. Returns a n-dim array of shape (bs, nres, ntors, 2), where ntors is the number of torsion angles (e.g. 2 if using phi and psi), and the last dimension is the xy unit-circle coordinates of the corresponding angle. """ if isinstance(torsions, np.ndarray): torsions = torch.Tensor(torsions) x = torsions.cos() y = torsions.sin() trig = torch.cat((x.unsqueeze(-1), y.unsqueeze(-1)), -1) if out == "numpy": return trig.detach().cpu().numpy() elif out == "torch": if device is not None: return trig.to(device) else: return trig def get_abego_string_from_torsions(torsions): A_bin = (-75, 50) G_bin = (-100, 100) torsions = torsions * 180.0 / np.pi phi, psi = torsions[:, :, 0], torsions[:, :, 1] abego_vec = np.zeros((torsions.size(0), torsions.size(1))).astype(str) A = (phi <= 0) & (psi <= A_bin[1]) & (psi > A_bin[0]) B = (phi <= 0) & ((psi > A_bin[1]) | (psi <= A_bin[0])) G = (phi > 0) & (psi <= G_bin[1]) & (psi > G_bin[0]) E = (phi > 0) & ((psi > G_bin[1]) | (psi <= G_bin[0])) abego_vec[A] = "A" abego_vec[B] = "B" abego_vec[G] = "G" abego_vec[E] = "E" abego_strs = ["".join(v) for v in abego_vec] return abego_strs def get_bond_lengths_from_coords(coords, batched=True, out="torch", device=None): """ Returns array of shape (bs, n_res, 4), where final dim is bond lengths in order of N-Ca, Ca-C, C-O, C-N (none for last residue) """ if isinstance(coords, np.ndarray): coords = torch.Tensor(coords) if len(coords.shape) == 2: coords = coords.unsqueeze(0) if len(coords.shape) == 3 and not batched: coords = coords.view(1, -1, 3) if len(coords.shape) == 4: coords = coords.view(coords.size(0), -1, 3) N = coords[:, ::4, :] Ca = coords[:, 1::4, :] C = coords[:, 2::4, :] O = coords[:, 3::4, :] NCa = (Ca - N).norm(dim=-1).unsqueeze(-1) CaC = (C - Ca).norm(dim=-1).unsqueeze(-1) CO = (O - C).norm(dim=-1).unsqueeze(-1) CN = (N[:, 1:] - C[:, :-1]).norm(dim=-1) CN = torch.cat([CN, torch.zeros(CN.size(0), 1).to(CN.device)], 1).unsqueeze(-1) blengths = torch.cat((NCa, CaC, CO, CN), -1) if out == "numpy": return blengths.detach().cpu().numpy() elif out == "torch": if device is not None: return blengths.to(device) else: return blengths def get_bond_angles_from_coords(coords, batched=True, out="torch", device=None): """ Returns array of shape (bs, n_res, 5), where final dim is bond angles in order of N-Ca-C, Ca-C-O, Ca-C-N, O-C-N, C-N-Ca (none for last residue) """ def _angle(v1, v2): cos = (v1 * v2).sum(-1) / (v1.norm(dim=-1) * v2.norm(dim=-1)) return cos.acos() if isinstance(coords, np.ndarray): coords = torch.Tensor(coords) if len(coords.shape) == 2: coords = coords.unsqueeze(0) if len(coords.shape) == 3 and not batched: coords = coords.view(1, -1, 3) if len(coords.shape) == 4: coords = coords.view(coords.size(0), -1, 3) N = coords[:, ::4, :] Nnext = coords[:, 4::4, :] Ca = coords[:, 1::4, :] Canext = coords[:, 5::4, :] C = coords[:, 2::4, :] O = coords[:, 3::4, :] CaN = N - Ca CaC = C - Ca CCa = Ca - C CO = O - C CNnext = Nnext - C[:, :-1, :] NnextC = -1 * CNnext NnextCanext = Canext - Nnext NCaC = _angle(CaN, CaC).unsqueeze(-1) CaCO = _angle(CCa, CO).unsqueeze(-1) CaCN = _angle(CCa[:, :-1], CNnext).unsqueeze(-1) CaCN = _extend(CaCN) OCN = _angle(CO[:, :-1], CNnext).unsqueeze(-1) OCN = _extend(OCN) CNCa = _angle(NnextC, NnextCanext).unsqueeze(-1) # CNCa = torch.cat([CNCa, torch.zeros(CNCa.size(0), 1).to(CNCa.device)], 1).unsqueeze(-1) CNCa = _extend(CNCa) bangles = torch.cat((NCaC, CaCO, CaCN, OCN, CNCa), -1) if out == "numpy": return bangles.detach().cpu().numpy() elif out == "torch": if device is not None: return bangles.to(device) else: return bangles def get_buried_positions_mask(coords, seq_mask=None, threshold=6.0): ca_idx = residue_constants.atom_order["CA"] # typically 1 cb_idx = residue_constants.atom_order["CB"] # typically 3 if seq_mask is None: seq_mask = torch.ones_like(coords)[..., 0, 0] coords = fill_in_cbeta_for_atom37(coords) # get 8 closest neighbors by CB neighbor_coords = coords[:, :, cb_idx] ca_neighbor_dists, edge_index = protein_mpnn.get_closest_neighbors( neighbor_coords, seq_mask, 9 ) edge_index = edge_index[..., 1:].contiguous() # compute avg CB distance cb_coords = coords[:, :, cb_idx] neighbor_cb = protein_mpnn.gather_nodes(cb_coords, edge_index) avg_cb_dist = (neighbor_cb - cb_coords[..., None, :]).pow(2).sum(-1).sqrt().mean(-1) buried_positions_mask = (avg_cb_dist < threshold).float() * seq_mask return buried_positions_mask def get_fullatom_bond_lengths_from_coords( coords, aatype, atom_mask=None, return_format="per_aa" ): # Also return sidechain bond angles. All unbatched. return list of dicts def dist(xyz1, xyz2): return (xyz1 - xyz2).pow(2).sum().sqrt().detach().cpu().item() assert aatype.max() <= 19 seq = aatype_to_seq(aatype) # residue-wise list of dicts [{'N-CA': a, 'CA-C': b}, {'N-CA': a, 'CA-C': b}] all_bond_lens_by_pos = [] # aa-wise dict of dicts of lists {'A': {'N-CA': [a, b, c], 'CA-C': [a, b, c]}} all_bond_lens_by_aa = {aa: {} for aa in residue_constants.restypes} for i, res in enumerate(coords): aa3 = residue_constants.restype_1to3[seq[i]] res_bond_lens = {} for j, atom1 in enumerate(residue_constants.atom_types): for k, atom2 in enumerate(residue_constants.atom_types): if j < k and protein.are_atoms_bonded(aa3, atom1, atom2): if atom_mask is None or ( atom_mask[i, j] > 0.5 and atom_mask[i, k] > 0.5 ): bond_name = f"{atom1}-{atom2}" bond_len = dist(res[j], res[k]) res_bond_lens[bond_name] = bond_len all_bond_lens_by_pos.append(res_bond_lens) for key, val in res_bond_lens.items(): all_bond_lens_by_aa[seq[i]].setdefault(key, []).append(val) if return_format == "per_aa": return all_bond_lens_by_aa elif return_format == "per_position": return all_bond_lens_by_pos def batched_fullatom_bond_lengths_from_coords( coords, aatype, atom_mask=None, return_format="per_aa" ): # Expects trimmed coords (no mask) if return_format == "per_position": batched_bond_lens = [] elif return_format == "per_aa": batched_bond_lens = {aa: {} for aa in residue_constants.restypes} for i, c in enumerate(coords): atom_mask_i = None if atom_mask is None else atom_mask[i] bond_lens = get_fullatom_bond_lengths_from_coords( c, aatype[i], atom_mask=atom_mask_i, return_format=return_format ) if return_format == "per_position": batched_bond_lens.extend(bond_lens) elif return_format == "per_aa": for aa, d in bond_lens.items(): for bond, lengths in d.items(): batched_bond_lens[aa].setdefault(bond, []).extend(lengths) return batched_bond_lens def batched_fullatom_bond_angles_from_coords(coords, aatype, return_format="per_aa"): # Expects trimmed coords (no mask) if return_format == "per_position": batched_bond_angles = [] elif return_format == "per_aa": batched_bond_angles = {aa: {} for aa in residue_constants.restypes} for i, c in enumerate(coords): bond_angles = get_fullatom_bond_angles_from_coords( c, aatype[i], return_format=return_format ) if return_format == "per_position": batched_bond_angles.extend(bond_angles) elif return_format == "per_aa": for aa, d in bond_angles.items(): for bond, lengths in d.items(): batched_bond_angles[aa].setdefault(bond, []).extend(lengths) return batched_bond_angles def get_chi_angles(coords, aatype, atom_mask=None, seq_mask=None): # unbatched # return (n, 4) chis in degrees and mask chis = [] chi_mask = [] atom_order = residue_constants.atom_order seq = aatype_to_seq(aatype, seq_mask=seq_mask) for i, aa1 in enumerate(seq): # per residue if seq_mask is not None and seq_mask[i] == 0: chis.append([0, 0, 0, 0]) chi_mask.append([0, 0, 0, 0]) else: chi = [] mask = [] chi_atoms = residue_constants.chi_angles_atoms[ residue_constants.restype_1to3[aa1] ] for j in range(4): # per chi angle if j > len(chi_atoms) - 1: chi.append(0) mask.append(0) elif atom_mask is not None and any( [atom_mask[i, atom_order[a]] < 0.5 for a in chi_atoms[j]] ): chi.append(0) mask.append(0) else: # Four atoms per dihedral xyz4 = [coords[i, atom_order[a]] for a in chi_atoms[j]] angle = dihedral(*xyz4) * 180 / np.pi chi.append(angle) mask.append(1) chis.append(chi) chi_mask.append(mask) chis = torch.Tensor(chis) chi_mask = torch.Tensor(chi_mask) return chis, chi_mask def fill_Os_from_NCaC_coords( coords: torch.Tensor, out: str = "torch", device: str = None ): """Given NCaC coords, add O atom coordinates in. (bs, 3n, 3) -> (bs, 4n, 3) """ CO_LEN = 1.231 if len(coords.shape) == 2: coords = coords.unsqueeze(0) Cs = coords[:, 2:-1:3, :] # all but last C CCa_norm = F.normalize(coords[:, 1:-2:3, :] - Cs, dim=-1) # all but last Ca CN_norm = F.normalize(coords[:, 3::3, :] - Cs, dim=-1) # all but first N Os = F.normalize(CCa_norm + CN_norm, dim=-1) * -CO_LEN Os += Cs # TODO place C-term O atom properly Os = torch.cat([Os, coords[:, -1, :].view(-1, 1, 3) + 1], 1) coords_out = [] for i in range(Os.size(1)): coords_out.append(coords[:, i * 3 : (i + 1) * 3, :]) coords_out.append(Os[:, i, :].view(-1, 1, 3)) coords_out = torch.cat(coords_out, 1) if out == "numpy": return coords_out.detach().cpu().numpy() elif out == "torch": if device is not None: return coords_out.to(device) else: return coords_out def _extend(x, axis=1, n=1, prepend=False): # Add an extra zeros 'residue' to the end (or beginning, prepend=True) of a Tensor # Used to extend torsions when there is no 'psi' for last residue shape = list(x.shape) shape[axis] = n if prepend: return torch.cat([torch.zeros(shape).to(x.device), x], axis) else: return torch.cat([x, torch.zeros(shape).to(x.device)], axis) def trim_coords(coords, n_res, batched=True): if batched: # Return list of tensors front = (coords.shape[1] - n_res) // 2 return [ coords[i, front[i] : front[i] + n_res[i]] for i in range(coords.shape[0]) ] else: if isinstance(n_res, torch.Tensor): n_res = n_res.int() front_pad = (coords.shape[0] - n_res) // 2 return coords[front_pad : front_pad + n_res] def batch_align_on_calpha(x, y): aligned_x = [] for i, xi in enumerate(x): xi_calpha = xi[:, 1, :] _, (R, t) = kabsch_align(xi_calpha, y[i, :, 1, :]) xi_ctr = xi - xi_calpha.mean(0, keepdim=True) xi_aligned = xi_ctr @ R.t() + t aligned_x.append(xi_aligned) return torch.stack(aligned_x) def kabsch_align(p, q): if len(p.shape) > 2: p = p.reshape(-1, 3) if len(q.shape) > 2: q = q.reshape(-1, 3) p_ctr = p - p.mean(0, keepdim=True) t = q.mean(0, keepdim=True) q_ctr = q - t H = p_ctr.t() @ q_ctr U, S, V = torch.svd(H) R = V @ U.t() I_ = torch.eye(3).to(p) I_[-1, -1] = R.det().sign() R = V @ I_ @ U.t() p_aligned = p_ctr @ R.t() + t return p_aligned, (R, t) def get_dssp_string(pdb): try: structure = Bio.PDB.PDBParser(QUIET=True).get_structure(pdb[:-3], pdb) dssp = DSSP(structure[0], pdb, dssp="mkdssp") dssp_string = "".join([dssp[k][2] for k in dssp.keys()]) return dssp_string except Exception as e: print(e) return None def pool_dssp_symbols(dssp_string, newchar=None, chars=["-", "T", "S", "C", " "]): """Replaces all instances of chars with newchar. DSSP chars are helix=GHI, strand=EB, loop=- TSC""" if newchar is None: newchar = chars[0] string_out = dssp_string for c in chars: string_out = string_out.replace(c, newchar) return string_out def get_3state_dssp(pdb=None, coords=None): if coords is not None: pdb = "temp_dssp.pdb" write_coords_to_pdb(coords, pdb, batched=False) dssp_string = get_dssp_string(pdb) if dssp_string is not None: dssp_string = pool_dssp_symbols(dssp_string, newchar="L") dssp_string = pool_dssp_symbols(dssp_string, chars=["H", "G", "I"]) dssp_string = pool_dssp_symbols(dssp_string, chars=["E", "B"]) if coords is not None: subprocess.run(shlex.split(f"rm {pdb}")) return dssp_string ############## SAVE/LOAD UTILS ################################# def load_feats_from_pdb( pdb, bb_atoms=["N", "CA", "C", "O"], load_atom73=False, **kwargs ): feats = {} with open(pdb, "r") as f: pdb_str = f.read() protein_obj = protein.from_pdb_string(pdb_str, **kwargs) bb_idxs = [residue_constants.atom_order[a] for a in bb_atoms] bb_coords = torch.from_numpy(protein_obj.atom_positions[:, bb_idxs]) feats["bb_coords"] = bb_coords.float() for k, v in vars(protein_obj).items(): feats[k] = torch.Tensor(v) feats["aatype"] = feats["aatype"].long() if load_atom73: feats["atom73_coords"], feats["atom73_mask"] = atom37_to_atom73( feats["atom_positions"], feats["aatype"], return_mask=True ) return feats def load_coords_from_pdb( pdb, atoms=["N", "CA", "C", "O"], method="raw", also_bfactors=False, normalize_bfactors=True, ): """Returns array of shape (1, n_res, len(atoms), 3)""" coords = [] bfactors = [] if method == "raw": # Raw numpy implementation, faster than biopdb # Indexing into PDB format, allowing XXXX.XXX coords_in_pdb = [slice(30, 38), slice(38, 46), slice(46, 54)] # Indexing into PDB format, allowing XXX.XX bfactor_in_pdb = slice(60, 66) with open(pdb, "r") as f: resi_prev = 1 counter = 0 for l in f: l_split = l.rstrip("\n").split() if len(l_split) > 0 and l_split[0] == "ATOM" and l_split[2] in atoms: resi = l_split[5] if resi == resi_prev: counter += 1 else: counter = 0 if counter < len(atoms): xyz = [ np.array(l[s].strip()).astype(float) for s in coords_in_pdb ] coords.append(xyz) if also_bfactors: bfactor = np.array(l[bfactor_in_pdb].strip()).astype(float) bfactors.append(bfactor) resi_prev = resi coords = torch.Tensor(np.array(coords)).view(1, -1, len(atoms), 3) if also_bfactors: bfactors = torch.Tensor(np.array(bfactors)).view(1, -1, len(atoms)) elif method == "biopdb": structure = Bio.PDB.PDBParser(QUIET=True).get_structure(pdb[:-3], pdb) for model in structure: for chain in model: for res in chain: for atom in atoms: try: coords.append(np.asarray(res[atom].get_coord())) if also_bfactors: bfactors.append(np.asarray(res[atom].get_bfactor())) except: continue else: raise NotImplementedError(f"Invalid method for reading coords: {method}") if also_bfactors: if normalize_bfactors: # Normalize over Calphas mean_b = bfactors[..., 1].mean() std_b = bfactors[..., 1].var().sqrt() bfactors = (bfactors - mean_b) / (std_b + 1e-6) return coords, bfactors return coords def feats_to_pdb_str( atom_positions, aatype=None, atom_mask=None, residue_index=None, chain_index=None, b_factors=None, atom_lines_only=True, conect=False, **kwargs, ): # Expects unbatched, cropped inputs. needs at least one of atom_mask, aatype # Uses all-GLY aatype if aatype not given: does not infer from atom_mask assert aatype is not None or atom_mask is not None if atom_mask is None: aatype = aatype.cpu() atom_mask = atom37_mask_from_aatype(aatype, torch.ones_like(aatype)) if aatype is None: seq_mask = atom_mask[:, residue_constants.atom_order["CA"]].cpu() aatype = seq_mask * residue_constants.restype_order["G"] if residue_index is None: residue_index = torch.arange(aatype.shape[-1]) if chain_index is None: chain_index = torch.ones_like(aatype) if b_factors is None: b_factors = torch.ones_like(atom_mask) cast = lambda x: np.array(x.detach().cpu()) if isinstance(x, torch.Tensor) else x prot = protein.Protein( atom_positions=cast(atom_positions), atom_mask=cast(atom_mask), aatype=cast(aatype), residue_index=cast(residue_index), chain_index=cast(chain_index), b_factors=cast(b_factors), ) pdb_str = protein.to_pdb(prot, conect=conect) if conect: pdb_str, conect_str = pdb_str if atom_lines_only: pdb_lines = pdb_str.split("\n") atom_lines = [ l for l in pdb_lines if len(l.split()) > 1 and l.split()[0] == "ATOM" ] pdb_str = "\n".join(atom_lines) + "\n" if conect: pdb_str = pdb_str + conect_str return pdb_str def bb_coords_to_pdb_str(coords, atoms=["N", "CA", "C", "O"]): def _bb_pdb_line(atom, atomnum, resnum, coords, elem, res="GLY"): atm = "ATOM".ljust(6) atomnum = str(atomnum).rjust(5) atomname = atom.center(4) resname = res.ljust(3) chain = "A".rjust(1) resnum = str(resnum).rjust(4) x = str("%8.3f" % (float(coords[0]))).rjust(8) y = str("%8.3f" % (float(coords[1]))).rjust(8) z = str("%8.3f" % (float(coords[2]))).rjust(8) occ = str("%6.2f" % (float(1))).rjust(6) temp = str("%6.2f" % (float(20))).ljust(6) elname = elem.rjust(12) return "%s%s %s %s %s%s %s%s%s%s%s%s\n" % ( atm, atomnum, atomname, resname, chain, resnum, x, y, z, occ, temp, elname, ) n = coords.shape[0] na = len(atoms) pdb_str = "" for j in range(0, n, na): for idx, atom in enumerate(atoms): pdb_str += _bb_pdb_line( atom, j + idx + 1, (j + na) // na, coords[j + idx], atom[0], ) return pdb_str def write_coords_to_pdb( coords_in, filename, batched=True, write_to_frames=False, conect=False, **all_atom_feats, ): def _write_pdb_string(pdb_str, filename, append=False): write_mode = "a" if append else "w" with open(filename, write_mode) as f: if write_to_frames: f.write("MODEL\n") f.write(pdb_str) if write_to_frames: f.write("ENDMDL\n") if not (batched or write_to_frames): coords_in = [coords_in] filename = [filename] all_atom_feats = {k: [v] for k, v in all_atom_feats.items()} n_atoms_in = coords_in[0].shape[-2] is_bb_or_ca_pdb = n_atoms_in <= 4 for i, c in enumerate(coords_in): n_res = c.shape[0] if isinstance(filename, list): fname = filename[i] elif write_to_frames or len(coords_in) == 1: fname = filename else: fname = f"{filename[:-4]}_{i}.pdb" if is_bb_or_ca_pdb: c_flat = rearrange(c, "n a c -> (n a) c") if n_atoms_in == 1: atoms = ["CA"] if n_atoms_in == 3: atoms = ["N", "CA", "C"] if n_atoms_in == 4: atoms = ["N", "CA", "C", "O"] pdb_str = bb_coords_to_pdb_str(c_flat, atoms) else: feats_i = {k: v[i][:n_res] for k, v in all_atom_feats.items()} pdb_str = feats_to_pdb_str(c, conect=conect, **feats_i) _write_pdb_string(pdb_str, fname, append=write_to_frames and i > 0) ###################### LOSSES ################################### def masked_cross_entropy(logprobs, target, loss_mask): # target is onehot cel = -(target * logprobs) cel = cel * loss_mask[..., None] cel = cel.sum((-1, -2)) / loss_mask.sum(-1).clamp(min=1e-6) return cel def masked_mse(x, y, mask, weight=None): data_dims = tuple(range(1, len(x.shape))) mse = (x - y).pow(2) * mask if weight is not None: mse = mse * expand(weight, mse) mse = mse.sum(data_dims) / mask.sum(data_dims).clamp(min=1e-6) return mse ###################### ALIGN ################################### def quick_tmalign( p, p_sele, q_sele, tmscore_type="avg", differentiable_rmsd=False, rmsd_type="ca" ): # sota 210712 write_coords_to_pdb(p_sele[:, 1:2], "temp_p.pdb", atoms=["CA"], batched=False) write_coords_to_pdb(q_sele[:, 1:2], "temp_q.pdb", atoms=["CA"], batched=False) cmd = f"{PATH_TO_TMALIGN} temp_p.pdb temp_q.pdb -m temp_matrix.txt" outputs = subprocess.run(shlex.split(cmd), capture_output=True, text=True) # Get RMSD and TM scores tmout = outputs.stdout.split("\n") rmsd = float(tmout[16].split()[4][:-1]) tmscore1 = float(tmout[17].split()[1]) tmscore2 = float(tmout[18].split()[1]) if tmscore_type == "avg": tmscore = (tmscore1 + tmscore2) / 2 elif tmscore_type == "1" or tmscore_type == "query": tmscore = tmscore1 elif tmscore_type == "2": tmscore = tmscore2 elif tmscore_type == "both": tmscore = (tmscore1, tmscore2) # Get R, t and transform p coords m = open("temp_matrix.txt", "r").readlines()[2:5] m = [l.strip()[1:].strip() for l in m] m = torch.Tensor([[float(i) for i in l.split()] for l in m]).to(p_sele.device) R = m[:, 1:].t() t = m[:, 0] aligned_psele = p_sele @ R + t aligned = p @ R + t # Option 2 for rms - MSE of aligned against target coords using TMalign seq alignment. Differentiable if differentiable_rmsd: pi, qi = 0, 0 p_idxs, q_idxs = [], [] for i, c in enumerate(tmout[23]): if c in [":", "."]: p_idxs.append(pi) q_idxs.append(qi) if tmout[22][i] != "-": pi += 1 if tmout[24][i] != "-": qi += 1 tmalign_seq_p = p_sele[p_idxs] tmalign_seq_q = q_sele[q_idxs] if rmsd_type == "ca": tmalign_seq_p = tmalign_seq_p[:, 1] tmalign_seq_q = tmalign_seq_q[:, 1] elif rmsd_type == "bb": pass rmsd = (tmalign_seq_p - tmalign_seq_q).pow(2).sum(-1).sqrt().mean() # Delete temp files: p.pdb, q.pdb, matrix.txt, tmalign.out subprocess.run(shlex.split("rm temp_p.pdb")) subprocess.run(shlex.split("rm temp_q.pdb")) subprocess.run(shlex.split("rm temp_matrix.txt")) return {"aligned": aligned, "rmsd": rmsd, "tm_score": tmscore, "R": R, "t": t} ###################### OTHER ################################### def expand(x, tgt=None, dim=1): if tgt is None: for _ in range(dim): x = x[..., None] else: while len(x.shape) < len(tgt.shape): x = x[..., None] return x def hookfn(name, verbose=False): def f(grad): if check_nan_inf(grad) > 0: print(name, "grad nan/infs", grad.shape, check_nan_inf(grad), grad) if verbose: print(name, "grad shape", grad.shape, "norm", grad.norm()) return f def trigger_nan_check(name, x): if check_nan_inf(x) > 0: print(name, check_nan_inf(x)) raise Exception def check_nan_inf(x): return torch.isinf(x).sum() + torch.isnan(x).sum() def directory_find(atom, root="."): for path, dirs, files in os.walk(root): if atom in dirs: return os.path.join(path, atom) def dict2namespace(config): namespace = argparse.Namespace() for key, value in config.items(): if isinstance(value, dict): new_value = dict2namespace(value) else: new_value = value setattr(namespace, key, new_value) return namespace def load_config(path, return_dict=False): with open(path, "r") as f: config_dict = yaml.safe_load(f) config = dict2namespace(config_dict) if return_dict: return config, config_dict else: return config