# ProteinMPNN To train/retrain ProteinMPNN clone this github repo and install Python>=3.0, PyTorch, Numpy. The multi-chain training data (16.5 GB, PDB biounits, 2021 August 2) can be downloaded from here: `https://files.ipd.uw.edu/pub/training_sets/pdb_2021aug02.tar.gz`; The small subsample (47 MB) of this data for testing purposes can be downloaded from here: `https://files.ipd.uw.edu/pub/training_sets/pdb_2021aug02_sample.tar.gz` ``` Training set for ProteinMPNN curated by Ivan Anishchanko. Each PDB entry is represented as a collection of .pt files: PDBID_CHAINID.pt - contains CHAINID chain from PDBID PDBID.pt - metadata and information on biological assemblies PDBID_CHAINID.pt has the following fields: seq - amino acid sequence (string) xyz - atomic coordinates [L,14,3] mask - boolean mask [L,14] bfac - temperature factors [L,14] occ - occupancy [L,14] (is 1 for most atoms, <1 if alternative conformations are present) PDBID.pt: method - experimental method (str) date - deposition date (str) resolution - resolution (float) chains - list of CHAINIDs (there is a corresponding PDBID_CHAINID.pt file for each of these) tm - pairwise similarity between chains (TM-score,seq.id.,rmsd from TM-align) [num_chains,num_chains,3] asmb_ids - biounit IDs as in the PDB (list of str) asmb_details - how the assembly was identified: author, or software, or smth else (list of str) asmb_method - PISA or smth else (list of str) asmb_chains - list of chains which each biounit is composed of (list of str, each str contains comma separated CHAINIDs) asmb_xformIDX - (one per biounit) xforms to be applied to chains from asmb_chains[IDX], [n,4,4] [n,:3,:3] - rotation matrices [n,3,:3] - translation vectors list.csv: CHAINID - chain label, PDBID_CHAINID DEPOSITION - deposition date RESOLUTION - structure resolution HASH - unique 6-digit hash for the sequence CLUSTER - sequence cluster the chain belongs to (clusters were generated at seqID=30%) SEQUENCE - reference amino acid sequence valid_clusters.txt - clusters used for validation test_clusters.txt - clusters used for testing ``` Code organization: * `training.py` - the main script to train the model * `model_utils.py` - utility functions and classes for the model * `utils.py` - utility functions and classes for data loading * `exp_020/` - sample outputs * `submit_exp_020.sh` - sample SLURM submit script ----------------------------------------------------------------------------------------------------- Input flags for `training.py`: ``` argparser.add_argument("--path_for_training_data", type=str, default="my_path/pdb_2021aug02", help="path for loading training data") argparser.add_argument("--path_for_outputs", type=str, default="./test", help="path for logs and model weights") argparser.add_argument("--previous_checkpoint", type=str, default="", help="path for previous model weights, e.g. file.pt") argparser.add_argument("--num_epochs", type=int, default=200, help="number of epochs to train for") argparser.add_argument("--save_model_every_n_epochs", type=int, default=10, help="save model weights every n epochs") argparser.add_argument("--reload_data_every_n_epochs", type=int, default=2, help="reload training data every n epochs") argparser.add_argument("--num_examples_per_epoch", type=int, default=1000000, help="number of training example to load for one epoch") argparser.add_argument("--batch_size", type=int, default=10000, help="number of tokens for one batch") argparser.add_argument("--max_protein_length", type=int, default=10000, help="maximum length of the protein complext") argparser.add_argument("--hidden_dim", type=int, default=128, help="hidden model dimension") argparser.add_argument("--num_encoder_layers", type=int, default=3, help="number of encoder layers") argparser.add_argument("--num_decoder_layers", type=int, default=3, help="number of decoder layers") argparser.add_argument("--num_neighbors", type=int, default=48, help="number of neighbors for the sparse graph") argparser.add_argument("--dropout", type=float, default=0.1, help="dropout level; 0.0 means no dropout") argparser.add_argument("--backbone_noise", type=float, default=0.2, help="amount of noise added to backbone during training") argparser.add_argument("--rescut", type=float, default=3.5, help="PDB resolution cutoff") argparser.add_argument("--debug", type=bool, default=False, help="minimal data loading for debugging") argparser.add_argument("--gradient_norm", type=float, default=-1.0, help="clip gradient norm, set to negative to omit clipping") argparser.add_argument("--mixed_precision", type=bool, default=True, help="train with mixed precision") ``` ----------------------------------------------------------------------------------------------------- For example to make a conda environment to run ProteinMPNN: * `conda create --name mlfold` - this creates conda environment called `mlfold` * `source activate mlfold` - this activate environment * `conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch` - install pytorch following steps from https://pytorch.org/ ----------------------------------------------------------------------------------------------------- Models provided for the vanilla MPNN were trained with default flags: * `v_48_002.pt` - `--num_neighbors 48 --backbone_noise 0.02 --num_epochs 150` * `v_48_010.pt` - `--num_neighbors 48 --backbone_noise 0.10 --num_epochs 150` * `v_48_020.pt` - `--num_neighbors 48 --backbone_noise 0.20 --num_epochs 150` ----------------------------------------------------------------------------------------------------- ``` @article{dauparas2022robust, title={Robust deep learning--based protein sequence design using ProteinMPNN}, author={Dauparas, Justas and Anishchenko, Ivan and Bennett, Nathaniel and Bai, Hua and Ragotte, Robert J and Milles, Lukas F and Wicky, Basile IM and Courbet, Alexis and de Haas, Rob J and Bethel, Neville and others}, journal={Science}, volume={378}, number={6615}, pages={49--56}, year={2022}, publisher={American Association for the Advancement of Science} } ``` -----------------------------------------------------------------------------------------------------