{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "" ] }, { "cell_type": "markdown", "metadata": { "id": "AYZebfKn8gef" }, "source": [ "#ProteinMPNN\n", "This notebook is intended as a quick demo, more features to come!" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "iYDU3ftml2k5" }, "outputs": [], "source": [ "#@title Clone github repo\n", "import json, time, os, sys, glob\n", "\n", "if not os.path.isdir(\"ProteinMPNN\"):\n", " os.system(\"git clone -q https://github.com/dauparas/ProteinMPNN.git\")\n", "sys.path.append('/content/ProteinMPNN/')" ] }, { "cell_type": "code", "source": [ "#@title Setup Model\n", "import matplotlib.pyplot as plt\n", "import shutil\n", "import warnings\n", "import numpy as np\n", "import torch\n", "from torch import optim\n", "from torch.utils.data import DataLoader\n", "from torch.utils.data.dataset import random_split, Subset\n", "import copy\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import random\n", "import os.path\n", "from protein_mpnn_utils import loss_nll, loss_smoothed, gather_edges, gather_nodes, gather_nodes_t, cat_neighbors_nodes, _scores, _S_to_seq, tied_featurize, parse_PDB\n", "from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN\n", "\n", "device = torch.device(\"cuda:0\" if (torch.cuda.is_available()) else \"cpu\")\n", "#v_48_010=version with 48 edges 0.10A noise\n", "model_name = \"v_48_002\" #@param [\"v_48_002\", \"v_48_020\"]\n", "\n", "\n", "backbone_noise=0.00 # Standard deviation of Gaussian noise to add to backbone atoms\n", "\n", "path_to_model_weights='/content/ProteinMPNN/ca_model_weights' \n", "hidden_dim = 128\n", "num_layers = 3 \n", "model_folder_path = path_to_model_weights\n", "if model_folder_path[-1] != '/':\n", " model_folder_path = model_folder_path + '/'\n", "checkpoint_path = model_folder_path + f'{model_name}.pt'\n", "\n", "checkpoint = torch.load(checkpoint_path, map_location=device) \n", "print('Number of edges:', checkpoint['num_edges'])\n", "noise_level_print = checkpoint['noise_level']\n", "print(f'Training noise level: {noise_level_print}A')\n", "model = ProteinMPNN(ca_only=True, num_letters=21, node_features=hidden_dim, edge_features=hidden_dim, hidden_dim=hidden_dim, num_encoder_layers=num_layers, num_decoder_layers=num_layers, augment_eps=backbone_noise, k_neighbors=checkpoint['num_edges'])\n", "model.to(device)\n", "model.load_state_dict(checkpoint['model_state_dict'])\n", "model.eval()\n", "print(\"Model loaded\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2nKSlaMlSpcf", "outputId": "f4fa14ea-d34a-4381-f2ad-7032e1465d93" }, "execution_count": 3, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Number of edges: 48\n", "Training noise level: 0.02A\n", "Model loaded\n" ] } ] }, { "cell_type": "code", "source": [ "#@title Helper functions\n", "def make_tied_positions_for_homomers(pdb_dict_list):\n", " my_dict = {}\n", " for result in pdb_dict_list:\n", " all_chain_list = sorted([item[-1:] for item in list(result) if item[:9]=='seq_chain']) #A, B, C, ...\n", " tied_positions_list = []\n", " chain_length = len(result[f\"seq_chain_{all_chain_list[0]}\"])\n", " for i in range(1,chain_length+1):\n", " temp_dict = {}\n", " for j, chain in enumerate(all_chain_list):\n", " temp_dict[chain] = [i] #needs to be a list\n", " tied_positions_list.append(temp_dict)\n", " my_dict[result['name']] = tied_positions_list\n", " return my_dict" ], "metadata": { "id": "yjnUkQuZX-de" }, "execution_count": 4, "outputs": [] }, { "cell_type": "markdown", "source": [ "Examples: \n", "\n", "1) pdb: 6MRR, homomer: False, designed_chain: A\n", "\n", "2) pdb: 1O91, homomer: True, designed_chain: A B C, for correct symmetric tying lenghts of homomer chains should be the same" ], "metadata": { "id": "bgRXscTaYuqM" } }, { "cell_type": "code", "execution_count": 5, "metadata": { "cellView": "form", "id": "k4o6w2Y23wxO", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "1512769c-a733-4e41-bb6b-25ab58fa7415" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "{'1O91': (['A', 'B', 'C'], [])}\n", "Length of chain C is 131\n", "Length of chain A is 131\n", "Length of chain B is 131\n" ] } ], "source": [ "import re\n", "from google.colab import files\n", "import numpy as np\n", "\n", "#########################\n", "def get_pdb(pdb_code=\"\"):\n", " if pdb_code is None or pdb_code == \"\":\n", " upload_dict = files.upload()\n", " pdb_string = upload_dict[list(upload_dict.keys())[0]]\n", " with open(\"tmp.pdb\",\"wb\") as out: out.write(pdb_string)\n", " return \"tmp.pdb\"\n", " else:\n", " os.system(f\"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb\")\n", " return f\"{pdb_code}.pdb\"\n", "\n", "#@markdown ### Input Options\n", "pdb='1O91' #@param {type:\"string\"}\n", "pdb_path = get_pdb(pdb)\n", "#@markdown - pdb code (leave blank to get an upload prompt)\n", "\n", "homomer = True #@param {type:\"boolean\"}\n", "designed_chain = \"A B C\" #@param {type:\"string\"}\n", "fixed_chain = \"\" #@param {type:\"string\"}\n", "\n", "if designed_chain == \"\":\n", " designed_chain_list = []\n", "else:\n", " designed_chain_list = re.sub(\"[^A-Za-z]+\",\",\", designed_chain).split(\",\")\n", "\n", "if fixed_chain == \"\":\n", " fixed_chain_list = []\n", "else:\n", " fixed_chain_list = re.sub(\"[^A-Za-z]+\",\",\", fixed_chain).split(\",\")\n", "\n", "chain_list = list(set(designed_chain_list + fixed_chain_list))\n", "\n", "#@markdown - specified which chain(s) to design and which chain(s) to keep fixed. \n", "#@markdown Use comma:`A,B` to specifiy more than one chain\n", "\n", "#chain = \"A\" #@param {type:\"string\"}\n", "#pdb_path_chains = chain\n", "##@markdown - Define which chain to redesign\n", "\n", "#@markdown ### Design Options\n", "num_seqs = 2 #@param [\"1\", \"2\", \"4\", \"8\", \"16\", \"32\", \"64\"] {type:\"raw\"}\n", "num_seq_per_target = num_seqs\n", "\n", "#@markdown - Sampling temperature for amino acids, T=0.0 means taking argmax, T>>1.0 means sample randomly.\n", "sampling_temp = \"0.1\" #@param [\"0.0001\", \"0.1\", \"0.15\", \"0.2\", \"0.25\", \"0.3\", \"0.5\"]\n", "\n", "\n", "\n", "save_score=0 # 0 for False, 1 for True; save score=-log_prob to npy files\n", "save_probs=0 # 0 for False, 1 for True; save MPNN predicted probabilites per position\n", "score_only=0 # 0 for False, 1 for True; score input backbone-sequence pairs\n", "conditional_probs_only=0 # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)\n", "conditional_probs_only_backbone=0 # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)\n", " \n", "batch_size=1 # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory\n", "max_length=20000 # Max sequence length\n", " \n", "out_folder='.' # Path to a folder to output sequences, e.g. /home/out/\n", "jsonl_path='' # Path to a folder with parsed pdb into jsonl\n", "omit_AAs='X' # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.\n", " \n", "pssm_multi=0.0 # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions\n", "pssm_threshold=0.0 # A value between -inf + inf to restric per position AAs\n", "pssm_log_odds_flag=0 # 0 for False, 1 for True\n", "pssm_bias_flag=0 # 0 for False, 1 for True\n", "\n", "\n", "##############################################################\n", "\n", "folder_for_outputs = out_folder\n", "\n", "NUM_BATCHES = num_seq_per_target//batch_size\n", "BATCH_COPIES = batch_size\n", "temperatures = [float(item) for item in sampling_temp.split()]\n", "omit_AAs_list = omit_AAs\n", "alphabet = 'ACDEFGHIKLMNPQRSTVWYX'\n", "\n", "omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)\n", "\n", "chain_id_dict = None\n", "fixed_positions_dict = None\n", "pssm_dict = None\n", "omit_AA_dict = None\n", "bias_AA_dict = None\n", "tied_positions_dict = None\n", "bias_by_res_dict = None\n", "bias_AAs_np = np.zeros(len(alphabet))\n", "\n", "\n", "###############################################################\n", "pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list)\n", "dataset_valid = StructureDatasetPDB(pdb_dict_list, truncate=None, max_length=max_length)\n", "\n", "chain_id_dict = {}\n", "chain_id_dict[pdb_dict_list[0]['name']]= (designed_chain_list, fixed_chain_list)\n", "\n", "print(chain_id_dict)\n", "for chain in chain_list:\n", " l = len(pdb_dict_list[0][f\"seq_chain_{chain}\"])\n", " print(f\"Length of chain {chain} is {l}\")\n", "\n", "if homomer:\n", " tied_positions_dict = make_tied_positions_for_homomers(pdb_dict_list)\n", "else:\n", " tied_positions_dict = None" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "xMVlYh8Fv2of", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "1f9245fd-1cfd-4ada-a9e3-1d5eb41287c9" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Generating sequences...\n", ">1O91, score=1.3644, fixed_chains=[], designed_chains=['A', 'B', 'C'], model_name=v_48_002\n", "EMPAFTAELTVPFPPVGAPVKFDKLLYNGRQNYNPQTGIFTCEVPGVYYFAYHVHCKGGNVWVALFKNNEPMMYTYDEYKKGFLDQASGSAVLLLRPGDQVFLQMPSEQAAGLYAGQYVHSSFSGYLLYPM/EMPAFTAELTVPFPPVGAPVKFDKLLYNGRQNYNPQTGIFTCEVPGVYYFAYHVHCKGGNVWVALFKNNEPMMYTYDEYKKGFLDQASGSAVLLLRPGDQVFLQMPSEQAAGLYAGQYVHSSFSGYLLYPM/EMPAFTAELTVPFPPVGAPVKFDKLLYNGRQNYNPQTGIFTCEVPGVYYFAYHVHCKGGNVWVALFKNNEPMMYTYDEYKKGFLDQASGSAVLLLRPGDQVFLQMPSEQAAGLYAGQYVHSSFSGYLLYPM\n", ">T=0.1, sample=0, score=0.7283, seq_recovery=0.5038\n", "EIEAFTASLTTSFPAVGTPIVFDTVLYNGLNCYDPATGIFTCKTPGIYFFSWTIYTKGQDVLVNLYKNTTAVKSSYMEAVPGHLSQTSTSAVLKLKVGDKVYVQSPSAAANGIYASSTNHSSFSGFLLEKA/EIEAFTASLTTSFPAVGTPIVFDTVLYNGLNCYDPATGIFTCKTPGIYFFSWTIYTKGQDVLVNLYKNTTAVKSSYMEAVPGHLSQTSTSAVLKLKVGDKVYVQSPSAAANGIYASSTNHSSFSGFLLEKA/EIEAFTASLTTSFPAVGTPIVFDTVLYNGLNCYDPATGIFTCKTPGIYFFSWTIYTKGQDVLVNLYKNTTAVKSSYMEAVPGHLSQTSTSAVLKLKVGDKVYVQSPSAAANGIYASSTNHSSFSGFLLEKA\n", ">T=0.1, sample=0, score=0.7394, seq_recovery=0.5115\n", "SIEAFTALLTKSFPAVGTPIKFDKIIYNGLNVYDPATGVFTCKTPGIYQFAWLLYTKGADTYAVLYKNDEAIQNTYREAVPGHLDQTSGSAVLELKEGDKVYVMTPSAAANGVYASETNHSSFSGWLLEKK/SIEAFTALLTKSFPAVGTPIKFDKIIYNGLNVYDPATGVFTCKTPGIYQFAWLLYTKGADTYAVLYKNDEAIQNTYREAVPGHLDQTSGSAVLELKEGDKVYVMTPSAAANGVYASETNHSSFSGWLLEKK/SIEAFTALLTKSFPAVGTPIKFDKIIYNGLNVYDPATGVFTCKTPGIYQFAWLLYTKGADTYAVLYKNDEAIQNTYREAVPGHLDQTSGSAVLELKEGDKVYVMTPSAAANGVYASETNHSSFSGWLLEKK\n" ] } ], "source": [ "#@title RUN\n", "with torch.no_grad():\n", " print('Generating sequences...')\n", " for ix, protein in enumerate(dataset_valid):\n", " score_list = []\n", " all_probs_list = []\n", " all_log_probs_list = []\n", " S_sample_list = []\n", " batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)]\n", " X, S, mask, lengths, chain_M, chain_encoding_all, chain_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef, pssm_bias, pssm_log_odds_all, bias_by_res_all, tied_beta = tied_featurize(batch_clones, device, chain_id_dict, fixed_positions_dict, omit_AA_dict, tied_positions_dict, pssm_dict, bias_by_res_dict, ca_only=True)\n", " pssm_log_odds_mask = (pssm_log_odds_all > pssm_threshold).float() #1.0 for true, 0.0 for false\n", " name_ = batch_clones[0]['name']\n", "\n", " randn_1 = torch.randn(chain_M.shape, device=X.device)\n", " log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1)\n", " mask_for_loss = mask*chain_M*chain_M_pos\n", " scores = _scores(S, log_probs, mask_for_loss)\n", " native_score = scores.cpu().data.numpy()\n", "\n", " for temp in temperatures:\n", " for j in range(NUM_BATCHES):\n", " randn_2 = torch.randn(chain_M.shape, device=X.device)\n", " if tied_positions_dict == None:\n", " sample_dict = model.sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), bias_by_res=bias_by_res_all)\n", " S_sample = sample_dict[\"S\"] \n", " else:\n", " sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)\n", " # Compute scores\n", " S_sample = sample_dict[\"S\"]\n", " log_probs = model(X, S_sample, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_2, use_input_decoding_order=True, decoding_order=sample_dict[\"decoding_order\"])\n", " mask_for_loss = mask*chain_M*chain_M_pos\n", " scores = _scores(S_sample, log_probs, mask_for_loss)\n", " scores = scores.cpu().data.numpy()\n", " all_probs_list.append(sample_dict[\"probs\"].cpu().data.numpy())\n", " all_log_probs_list.append(log_probs.cpu().data.numpy())\n", " S_sample_list.append(S_sample.cpu().data.numpy())\n", " for b_ix in range(BATCH_COPIES):\n", " masked_chain_length_list = masked_chain_length_list_list[b_ix]\n", " masked_list = masked_list_list[b_ix]\n", " seq_recovery_rate = torch.sum(torch.sum(torch.nn.functional.one_hot(S[b_ix], 21)*torch.nn.functional.one_hot(S_sample[b_ix], 21),axis=-1)*mask_for_loss[b_ix])/torch.sum(mask_for_loss[b_ix])\n", " seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])\n", " score = scores[b_ix]\n", " score_list.append(score)\n", " native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])\n", " if b_ix == 0 and j==0 and temp==temperatures[0]:\n", " start = 0\n", " end = 0\n", " list_of_AAs = []\n", " for mask_l in masked_chain_length_list:\n", " end += mask_l\n", " list_of_AAs.append(native_seq[start:end])\n", " start = end\n", " native_seq = \"\".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))\n", " l0 = 0\n", " for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:\n", " l0 += mc_length\n", " native_seq = native_seq[:l0] + '/' + native_seq[l0:]\n", " l0 += 1\n", " sorted_masked_chain_letters = np.argsort(masked_list_list[0])\n", " print_masked_chains = [masked_list_list[0][i] for i in sorted_masked_chain_letters]\n", " sorted_visible_chain_letters = np.argsort(visible_list_list[0])\n", " print_visible_chains = [visible_list_list[0][i] for i in sorted_visible_chain_letters]\n", " native_score_print = np.format_float_positional(np.float32(native_score.mean()), unique=False, precision=4)\n", " line = '>{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\\n{}\\n'.format(name_, native_score_print, print_visible_chains, print_masked_chains, model_name, native_seq)\n", " print(line.rstrip())\n", " start = 0\n", " end = 0\n", " list_of_AAs = []\n", " for mask_l in masked_chain_length_list:\n", " end += mask_l\n", " list_of_AAs.append(seq[start:end])\n", " start = end\n", "\n", " seq = \"\".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))\n", " l0 = 0\n", " for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:\n", " l0 += mc_length\n", " seq = seq[:l0] + '/' + seq[l0:]\n", " l0 += 1\n", " score_print = np.format_float_positional(np.float32(score), unique=False, precision=4)\n", " seq_rec_print = np.format_float_positional(np.float32(seq_recovery_rate.detach().cpu().numpy()), unique=False, precision=4)\n", " line = '>T={}, sample={}, score={}, seq_recovery={}\\n{}\\n'.format(temp,b_ix,score_print,seq_rec_print,seq)\n", " print(line.rstrip())\n", "\n", "\n", "all_probs_concat = np.concatenate(all_probs_list)\n", "all_log_probs_concat = np.concatenate(all_log_probs_list)\n", "S_sample_concat = np.concatenate(S_sample_list)" ] }, { "cell_type": "code", "source": [ "#@markdown ### Amino acid probabilties\n", "import plotly.express as px\n", "fig = px.imshow(np.exp(all_log_probs_concat).mean(0).T,\n", " labels=dict(x=\"positions\", y=\"amino acids\", color=\"probability\"),\n", " y=list(alphabet),\n", " template=\"simple_white\"\n", " )\n", "\n", "fig.update_xaxes(side=\"top\")\n", "\n", "\n", "fig.show()" ], "metadata": { "id": "xbsaRChNfybM", "outputId": "c668a192-1e0b-4953-95f0-b6fb029748ba", "colab": { "base_uri": "https://localhost:8080/", "height": 542 } }, "execution_count": 10, "outputs": [ { "output_type": "display_data", "data": { "text/html": [ "\n", "
\n", "\n", "