# -*- coding: utf-8 -*- """ITI110_Final.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1wAe1__d6108Sb-qIL2rOlwhLXhE3B_Yo """ # Install and import necessary libraries to access Groq. import subprocess import sys # Install required packages def install_packages(): packages = ["groq", "gradio", "ultralytics", "moviepy", "requests", "soundfile", "pandas", "datetime", "openai", "pydub", "matplotlib", "numpy", "fpdf"] subprocess.check_call([sys.executable, "-m", "pip", "install"] + packages) install_packages() # Call function to install packages import os os.system("pip uninstall -y moviepy && pip install --no-cache-dir moviepy") # FOR SENTIMENT ANALYSIS - SETYANI # Install and import necessary libraries to access Groq #!pip install groq gradio opencv-python moviepy requests soundfile pydub matplotlib numpy fpdf import os import groq from groq import Groq import gradio as gr import numpy as np import tempfile import requests from moviepy import VideoFileClip from pydub import AudioSegment import matplotlib.pyplot as plt import time import seaborn as sns from collections import Counter from fpdf import FPDF # Global Variables sentiment_scores = {"positive": 1, "neutral": 0, "negative": -1} sentiment_history = [] transcribed_text = "Listening..." report_path = "sentiment_report.pdf" sentiment_trend_path = "sentiment_trend.png" sentiment_heatmap_path = "sentiment_heatmap.png" sentiment_pie_chart_path = "sentiment_pie_chart.png" emotion_trend_path = "emotiont_trend.png" emotion_heatmap_path = "emotion_heatmap.png" emotion_pie_chart_path = "emotion_pie_chart.png" # Get the key to access Groq API_KEY = os.environ.get("GROQ_API_KEY", "No Key Found") # Initialize Groq Client grog_client = groq.Groq(api_key=API_KEY) # MAIN function to convert audio into text using Groq Whisper speech-to-text service def transcribe_audio(audio_file_path): # Open the audio file with open(audio_file_path, "rb") as file: # Create an audio transcription using the grog_client API transcription = grog_client.audio.transcriptions.create( file=(audio_file_path, file.read()), # Read the audio file from the specified path and send it as input model="whisper-large-v3", # chosen Whisper model to be used for transcription #model="whisper-large-v3-turbo", # tested another Whisper model #model="distil-whisper-large-v3-en", # tested another Whisper model prompt="Specify context or spelling", # Optional prompt to provide context or spelling preferences response_format="json", # Specify the format of the response (JSON format in this case) language="en", # Specify the language of the audio (English in this case) temperature=0.0 # Control the randomness of the output (0.0 means deterministic output) ) return transcription.text # MAIN function to do sentiment analysis using Groq LLM model llama3-8b-8192 def analyze_sentiment(text): # Create a completion using the grog_client API response = grog_client.chat.completions.create( model="llama3-8b-8192", # Specify the model to be used for generating the completion messages=[ {"role": "system", "content": "You are an expert in text sentiment analysis. Analyze the sentiment of this text and return only 'Positive', 'Negative', or 'Neutral'."}, {"role": "user", "content": text} ], temperature=0.0, # Control the randomness of the output (0.0 means deterministic output) max_tokens=200 # Limit the response length to 200 tokens ) sentiment = response.choices[0].message.content #print(sentiment) sentiment_history.append(sentiment_scores.get(sentiment.lower(), 0)) print(sentiment_history) return sentiment # Integrated and tested AZURE services for Speech-to-text using Whisper and # Azure Sentiment Analysis using gpt-35-turbo-16k vs Azure LANGUAGE service for text analytic #!pip install azure-cognitiveservices-speech azure-ai-textanalytics azure-core azure-identity # Removed Azure codes here to protect the keys, only included in the project submission # CLEANUP transcribed text before doing Sentiment Analysis import re #used for regular expressions # Helper function to remove suffixes from numbers in the input text. def remove_suffixes(text): # Regular expression to find numbers followed by common suffixes pattern = r'(\d+)(st|nd|rd|th)' # Replace the matched pattern with just the number (capture group 1) cleaned_text = re.sub(pattern, r'\1', text) return cleaned_text # Return the cleaned text without suffixes # Helper function to remove repeated phrases in the transcript text which sometimes exist due to transcription error def remove_repeated_phrases(text): # Regular expression to find repeated phrases with length up to 3 words pattern = r'\b(\w+\s+\w+\s+\w+|\w+\s+\w+|\w+)\s+\1\b' prev_text = '' while prev_text != text: prev_text = text # Store previous version for comparison text = re.sub(pattern, r'\1 \1', text, flags=re.IGNORECASE) # Keep only two instances for genuine repeat, e.g: bye. bye. return text # Return the cleaned text without repeated phrases # Example Usage #text = "hello world hello world hello world test test test again again again" #cleaned_text = remove_repeated_phrases(text) #print(cleaned_text) # Output: "hello world hello world test test again again" # Helper function for text preprocessing before calculating WER def preprocess_text(text): text = remove_repeated_phrases(text) #remove repeated phrases due to transcription error text = text.replace('\n', ' ') #replace newline with space text = text.lower() #convert text to lower case text = text.replace('-', '') #replace hypen with none text = re.sub(r'[^a-z\s0-9!?]', ' ', text)#replace with space those NON lowercase letters, NON whitespace chars, NON numbers, NON exclamation, NON question mark text = re.sub(r'\b(okay)\b', 'ok', text) #replace okay with ok to standardize the format text = re.sub(r'\b(yeah)\b', 'yes', text) #replace yeah with yes to standardize the format text = re.sub(r'\b(um)\b', '', text) #remove the word um filler word text = re.sub(r'\b(uh)\b', '', text) #remove the word uh filler word text = remove_suffixes(text) #remove suffixes behind numbers like st, nd, rd, th text = re.sub(r'\s+', ' ', text).strip() #Removes extra spaces, including leading, trailing, and multiple spaces between words return text # Return the cleaned text after preprocessing # HELPER function for Display Output of Sentiment Analysis # Update the Sentiment Trend Over Time real-time graph def update_plot(): plt.clf() # Generate timestamps timestamps = list(range(len(sentiment_history))) # Define color mapping for sentiment scores colors = ["red" if s < -0.3 else "yellow" if -0.3 <= s <= 0.3 else "green" for s in sentiment_history] plt.figure(figsize=(8, 4)) # Plot sentiment scores with colored markers for i in range(len(sentiment_history)): plt.plot(timestamps[i], sentiment_history[i], marker="o", color=colors[i], markersize=8) # Plot line segments with the color of the next point for i in range(len(sentiment_history) - 1): plt.plot(timestamps[i:i+2], sentiment_history[i:i+2], linestyle="-", color=colors[i+1], linewidth=2) plt.title("Sentiment Trend Over Time") plt.xlabel("Time (Speech Segments)") plt.ylabel("Sentiment Score") plt.ylim([-1, 1]) plt.yticks([-1, 0, 1], ["Negative", "Neutral", "Positive"]) plt.savefig(sentiment_trend_path) # Save the plot as an image plt.close() # Generate the sentiment heatmap using red, yellow, and green colors. def generate_sentiment_heatmap(): plt.clf() #if not sentiment_history: # return # Convert sentiment scores to corresponding colors heatmap_data = np.array(sentiment_history).reshape(1, -1) #print(heatmap_data) # Define color mapping for sentiment scores color_mapping = ["red", "yellow", "green"] plt.figure(figsize=(6, 3)) ax = sns.heatmap(heatmap_data, annot=True, cmap=color_mapping, xticklabels=False, yticklabels=["Sentiment"], cbar=True, vmin=-1, vmax=1) # Customize color bar labels colorbar = ax.collections[0].colorbar colorbar.set_ticks([-1, 0, 1]) colorbar.set_ticklabels(["Negative", "Neutral", "Positive"]) plt.title("Sentiment Heatmap") # (Red = Negative, Yellow = Neutral, Green = Positive) plt.show() plt.savefig(sentiment_heatmap_path) plt.close() # Generate a Pie Chart for Sentiment Distribution. def generate_sentiment_pie_chart(): plt.clf() #if not sentiment_history: # return # Count occurrences of each sentiment category sentiment_labels = ["Negative", "Neutral", "Positive"] sentiment_counts = Counter(["Negative" if s < -0.3 else "Neutral" if -0.3 <= s <= 0.3 else "Positive" for s in sentiment_history]) # Extract count values counts = [sentiment_counts[label] for label in sentiment_labels] # Define colors colors = ["red", "yellow", "green"] # Plot pie chart plt.figure(figsize=(4, 4)) plt.pie(counts, labels=sentiment_labels, autopct="%1.1f%%", colors=colors, startangle=140) plt.title("Sentiment Distribution") plt.savefig(sentiment_pie_chart_path) plt.close() # Create and save a PDF report with transcription and sentiment analysis graphs. def generate_pdf_report(text): pdf = FPDF() pdf.set_auto_page_break(auto=True, margin=15) pdf.add_page() # Title pdf.set_font("Arial", style='B', size=16) pdf.cell(200, 10, "Sentiment Analysis Report", ln=True, align="C") pdf.ln(10) # Transcribed Text pdf.set_font("Arial", size=12) pdf.multi_cell(0, 10, f"Transcribed Text:\n\n{text}") pdf.ln(10) # Add images for img_path in [sentiment_trend_path, sentiment_heatmap_path, sentiment_pie_chart_path, emotion_trend_path, emotion_heatmap_path, emotion_pie_chart_path]: if os.path.exists(img_path): pdf.add_page() pdf.image(img_path, x=10, w=180) pdf.output(report_path) return report_path # FOR FACE EMOTION ANALYSYS - SONG MING #!pip install gradio ultralytics pandas matplotlib datetime import gradio as gr from ultralytics import YOLO import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import logging import cv2 from datetime import datetime import os # Configure logging (optional) logging.basicConfig(filename='emotion_analysis.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Load model (outside the function) try: model = YOLO('yolo11m_affectnet_best.pt') # Replace with your model path. Download this model first! except Exception as e: logging.error(f"Error loading YOLO model: {e}. Make sure the path is correct.") print(f"Error loading YOLO model: {e}. Make sure the path is correct.") model = None emotion_labels = ["neutral", "happy", "sad", "angry", "fearful", "disgusted", "surprised", "not_detected"] # Initialize an empty global DataFrame combined_df = pd.DataFrame(columns=['Emotion', 'Confidence', 'Frame', 'Class', 'Timestamp']) def analyze_video(video_file, interval_seconds=5, confidence=30, iou=30): if model is None: return "

YOLO model failed to load. Check the logs.

" model.conf = confidence / 100.0 model.iou = iou / 100.0 cap = cv2.VideoCapture(video_file) if not cap.isOpened(): print(f"Error opening video file: {video_file}") return "

Error opening video file.

" fps = cap.get(cv2.CAP_PROP_FPS) total_frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) all_emotions_data = [] current_frame = 0 interval_frames = int(fps * interval_seconds) while current_frame < total_frame_count: cap.set(cv2.CAP_PROP_POS_FRAMES, current_frame) ret, frame = cap.read() if not ret: continue analyze_emotion(frame, current_frame, all_emotions_data) current_frame += interval_frames # Move to the next frame in the next interval print(f"Finished Processing : {current_frame}") cap.release() print(f"Finished Processing all frames") all_emotions_df = pd.DataFrame(all_emotions_data) if all_emotions_df.empty: return "No emotions detected in the video." combined_df = all_emotions_df.groupby(['Frame', 'Emotion'], as_index=False).agg({'Confidence': 'mean', 'Class': 'first', 'Timestamp': 'first'}) # Line plot plt.figure(figsize=(10, 6)) sns.lineplot(data=combined_df, x='Frame', y='Confidence', hue='Emotion', marker='o') plt.title('Emotion Detections Over Time') plt.xlabel('Frame') plt.ylabel('Confidence') #line_plot_path = os.path.abspath('line_plot.png') plt.savefig(emotion_trend_path) plt.close() # Pie chart pie_data = combined_df['Emotion'].value_counts() plt.figure(figsize=(20, 12)) plt.pie(pie_data, labels=pie_data.index, autopct='%1.1f%%', startangle=90) plt.title('Emotion Distribution') #pie_chart_path = os.path.abspath('pie_chart.png') plt.savefig(emotion_pie_chart_path) plt.close() # Heatmap plt.figure(figsize=(10, 6)) heatmap_data = pd.pivot_table(combined_df, values='Confidence', index='Frame', columns='Emotion', fill_value=0) sns.heatmap(heatmap_data, cmap='YlGnBu', cbar_kws={'label': 'Confidence'}) plt.title('Emotion Heatmap') plt.xlabel('Emotion') plt.ylabel('Frame') #heatmap_path = os.path.abspath('heatmap.png') plt.savefig(emotion_heatmap_path) plt.close() def analyze_emotion(frame, frame_index, all_emotions_data): if model is None: return results = model(frame) for result in results: boxes = result.boxes for box in boxes: conf = float(box.conf) cls = int(box.cls.item()) if cls < len(emotion_labels): predicted_emotion = emotion_labels[cls] else: predicted_emotion = 'not_detected' logging.warning(f"Predicted class {cls} out of range. Setting to 'not_detected'.") conf = 0.0 if conf > model.conf: timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f') all_emotions_data.append({ 'Emotion': predicted_emotion, 'Confidence': conf, 'Frame': frame_index, 'Class': cls, 'Timestamp': timestamp }) # MAIN FUNCTIONs FOR GRADIO APPLICATION - SETYANI # 17/2 video file sentiment analysis working # 21/2 fixed heatmap display, add button click handler for clear, download report # 23/2 integrated Azure Whisper, GPT and Language services created by Thim Wai, however the performance is too slow so switch back to Groq # 25/2 integrated Face Emotion analysis from SongMing #========================================================================================================================================== # MAIN function to process uploaded video from Gradio User Interface def process_video_gradio(video_path): global sentiment_history sentiment_history = [] # Reset sentiment history if not os.path.exists(video_path): raise ValueError("File not found.") clear_function() # clear the previous analysis files if exist video_clip = VideoFileClip(video_path) # extract video audio_clip = video_clip.audio # extract audio with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: audio_clip.write_audiofile(temp_audio.name) full_audio_path = temp_audio.name audio = AudioSegment.from_wav(full_audio_path) segment_length = 5000 # 5 seconds per segment num_segments = len(audio) // segment_length transcribed_text = "" for i in range(num_segments): segment = audio[i * segment_length: (i + 1) * segment_length] # split audio into segment of 5sec each to be analysed segment_path = f"temp_segment_{i}.wav" segment.export(segment_path, format="wav") segment_text = transcribe_audio(segment_path) # CALL transcribe audio using Groq Whisper #segment_text = transcribe_audio_azure(segment_path) # CALL transcribe audio using Azure Whisper # Insert segment number inside the text for easy comparison with Sentiment Trend segment_text = f"[{i}] {segment_text}" transcribed_text += segment_text + "\n" # added new line for display purpose preprocess_text(segment_text) sentiment = analyze_sentiment(segment_text) # CALL analyze sentiment using Groq Llama #sentiment = analyze_sentiment_gpt(segment_text) # CALL analyze sentiment using Azure GPT #text_analytics_client = authenticate_text_analytics_client() # CALL analyze sentiment using Azure Language Service #sentiment = analyze_sentiment_azure(text_analytics_client, segment_text) # CALL analyze sentiment using Azure Language Service os.remove(segment_path) # Cleanup segment files update_plot() # Update plot after processing each segment yield transcribed_text, sentiment_trend_path, sentiment_heatmap_path, sentiment_pie_chart_path, emotion_trend_path, emotion_heatmap_path, emotion_pie_chart_path os.remove(full_audio_path) # Cleanup full audio file generate_sentiment_heatmap() generate_sentiment_pie_chart() yield transcribed_text, sentiment_trend_path, sentiment_heatmap_path, sentiment_pie_chart_path, emotion_trend_path, emotion_heatmap_path, emotion_pie_chart_path analyze_video(video_path) report_path = generate_pdf_report(transcribed_text) # update final heatmap and pie chart before return yield transcribed_text, sentiment_trend_path, sentiment_heatmap_path, sentiment_pie_chart_path, emotion_trend_path, emotion_heatmap_path, emotion_pie_chart_path return transcribed_text, sentiment_trend_path, sentiment_heatmap_path, sentiment_pie_chart_path, emotion_trend_path, emotion_heatmap_path, emotion_pie_chart_path # Function to handle 'Download Report' button def download_report_function(): if not os.path.exists(report_path): raise ValueError("Please upload video file for report analysis.") return report_path # Function to handle 'Clear' button def clear_function(): if os.path.isfile(sentiment_trend_path): # Ensure it is a file before attempting to delete os.remove(sentiment_trend_path) if os.path.isfile(sentiment_heatmap_path): os.remove(sentiment_heatmap_path) if os.path.isfile(sentiment_pie_chart_path): os.remove(sentiment_pie_chart_path) if os.path.isfile(emotion_trend_path): # Ensure it is a file before attempting to delete os.remove(emotion_trend_path) if os.path.isfile(emotion_heatmap_path): os.remove(emotion_heatmap_path) if os.path.isfile(emotion_pie_chart_path): os.remove(emotion_pie_chart_path) #if os.path.isfile(report_path): #os.remove(report_path) #return gr.update(value=None, interactive=True), gr.update(value="", interactive=False), gr.update(value=""), gr.update(value=""), gr.update(value=""), gr.update(value=""), gr.update(value=""), gr.update(value="") return None, None, None, None, None, None, None, None iface = gr.Interface( fn=process_video_gradio, inputs=gr.Video(label="Video"), outputs=[ gr.Textbox(label="Transcribed Text"), gr.Image(label="Sentiment Trend Over Time"), gr.Image(label="Sentiment Heatmap"), gr.Image(label="Sentiment Distribution Pie Chart"), gr.Image(label="Emotion Trend Over Time"), gr.Image(label="Emotion Heatmap"), gr.Image(label="Emotion Distribution Pie Chart") ], allow_flagging="never", # Disable flag button title="Real-Time Video Sentiment Analysis", description="Upload a video file or use your webcam for live video streaming to analyze speech sentiment dynamically.", live=True # Enable live updates for streaming ) with gr.Blocks() as iface: with gr.Row(): video_input = gr.Video(label="Video", scale=1, interactive = True) # Video box takes more space transcribed_text = gr.Textbox(label="Transcribed Text", lines=15, max_lines=15, interactive=False, scale=1) with gr.Row(): sentiment_trend = gr.Image(label="Sentiment Trend Over Time", scale=2) sentiment_heatmap = gr.Image(label="Sentiment Heatmap", scale=1) sentiment_pie_chart = gr.Image(label="Sentiment Distribution Pie Chart", scale=1) with gr.Row(): emotion_trend = gr.Image(label="Emotion Trend Over Time", scale=2) emotion_heatmap = gr.Image(label="Emotion Heatmap", scale=1) emotion_pie_chart = gr.Image(label="Emotion Distribution Pie Chart", scale=1) with gr.Row(): # Buttons for manual control download_button = gr.Button("Download Report") clear_button = gr.Button("Clear") video_input.change(fn=process_video_gradio, inputs=video_input, outputs=[transcribed_text, sentiment_trend, sentiment_heatmap, sentiment_pie_chart, emotion_trend, emotion_heatmap, emotion_pie_chart ]) # Add custom JavaScript to trigger play button after uploading instructions = gr.HTML(""" """) # Link the button clicks to the functions that handle them download_button.click(fn=download_report_function, inputs=[], outputs=gr.File()) clear_button.click( fn=clear_function, inputs=[], outputs=[video_input, transcribed_text, sentiment_trend, sentiment_heatmap, sentiment_pie_chart, emotion_trend, emotion_heatmap, emotion_pie_chart]) iface.launch(inline=False, share=True)